Browse Source

📝 Updates links for Celery documentation (#4736)

Co-authored-by: Sebastián Ramírez <[email protected]>
pull/4887/head
Samuel Borges 3 years ago
committed by GitHub
parent
commit
441f75a06c
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      docs/en/docs/tutorial/background-tasks.md
  2. 2
      docs/en/docs/tutorial/sql-databases.md
  3. 2
      docs/fr/docs/tutorial/background-tasks.md

2
docs/en/docs/tutorial/background-tasks.md

@ -89,7 +89,7 @@ You can see more details in <a href="https://www.starlette.io/background/" class
## Caveat
If you need to perform heavy background computation and you don't necessarily need it to be run by the same process (for example, you don't need to share memory, variables, etc), you might benefit from using other bigger tools like <a href="https://docs.celeryproject.org" class="external-link" target="_blank">Celery</a>.
If you need to perform heavy background computation and you don't necessarily need it to be run by the same process (for example, you don't need to share memory, variables, etc), you might benefit from using other bigger tools like <a href="https://docs.celeryq.dev" class="external-link" target="_blank">Celery</a>.
They tend to require more complex configurations, a message/job queue manager, like RabbitMQ or Redis, but they allow you to run background tasks in multiple processes, and especially, in multiple servers.

2
docs/en/docs/tutorial/sql-databases.md

@ -616,7 +616,7 @@ And as the code related to SQLAlchemy and the SQLAlchemy models lives in separat
The same way, you would be able to use the same SQLAlchemy models and utilities in other parts of your code that are not related to **FastAPI**.
For example, in a background task worker with <a href="https://docs.celeryproject.org" class="external-link" target="_blank">Celery</a>, <a href="https://python-rq.org/" class="external-link" target="_blank">RQ</a>, or <a href="https://arq-docs.helpmanual.io/" class="external-link" target="_blank">ARQ</a>.
For example, in a background task worker with <a href="https://docs.celeryq.dev" class="external-link" target="_blank">Celery</a>, <a href="https://python-rq.org/" class="external-link" target="_blank">RQ</a>, or <a href="https://arq-docs.helpmanual.io/" class="external-link" target="_blank">ARQ</a>.
## Review all the files

2
docs/fr/docs/tutorial/background-tasks.md

@ -81,7 +81,7 @@ Plus de détails sont disponibles dans <a href="https://www.starlette.io/backgro
## Avertissement
Si vous avez besoin de réaliser des traitements lourds en tâche d'arrière-plan et que vous n'avez pas besoin que ces traitements aient lieu dans le même process (par exemple, pas besoin de partager la mémoire, les variables, etc.), il peut s'avérer profitable d'utiliser des outils plus importants tels que <a href="https://docs.celeryproject.org" class="external-link" target="_blank">Celery</a>.
Si vous avez besoin de réaliser des traitements lourds en tâche d'arrière-plan et que vous n'avez pas besoin que ces traitements aient lieu dans le même process (par exemple, pas besoin de partager la mémoire, les variables, etc.), il peut s'avérer profitable d'utiliser des outils plus importants tels que <a href="https://docs.celeryq.dev" class="external-link" target="_blank">Celery</a>.
Ces outils nécessitent généralement des configurations plus complexes ainsi qu'un gestionnaire de queue de message, comme RabbitMQ ou Redis, mais ils permettent d'exécuter des tâches d'arrière-plan dans différents process, et potentiellement, sur plusieurs serveurs.

Loading…
Cancel
Save