Browse Source

📝 Update docs highlighting after re-sort imports

coming back to flit, after pipenv
pull/11/head
Sebastián Ramírez 6 years ago
parent
commit
e6ca71523b
  1. 10
      docs/tutorial/body-multiple-params.md
  2. 18
      docs/tutorial/body-nested-models.md
  3. 6
      docs/tutorial/body-schema.md
  4. 12
      docs/tutorial/body.md
  5. 14
      docs/tutorial/custom-response.md
  6. 4
      docs/tutorial/extra-models.md
  7. 14
      docs/tutorial/nosql-databases.md
  8. 10
      docs/tutorial/path-operation-configuration.md
  9. 12
      docs/tutorial/response-model.md
  10. 8
      docs/tutorial/sql-databases.md

10
docs/tutorial/body-multiple-params.md

@ -6,7 +6,7 @@ First, of course, you can mix `Path`, `Query` and request body parameter declara
And you can also declare body parameters as optional, by setting the default to `None`: And you can also declare body parameters as optional, by setting the default to `None`:
```Python hl_lines="18 19 20" ```Python hl_lines="17 18 19"
{!./tutorial/src/body_multiple_params/tutorial001.py!} {!./tutorial/src/body_multiple_params/tutorial001.py!}
``` ```
@ -29,7 +29,7 @@ In the previous example, the path operations would expect a JSON body with the a
But you can also declare multiple body parameters, e.g. `item` and `user`: But you can also declare multiple body parameters, e.g. `item` and `user`:
```Python hl_lines="21" ```Python hl_lines="20"
{!./tutorial/src/body_multiple_params/tutorial002.py!} {!./tutorial/src/body_multiple_params/tutorial002.py!}
``` ```
@ -71,7 +71,7 @@ If you declare it as is, because it is a singular value, **FastAPI** will assume
But you can instruct **FastAPI** to treat it as another body key using `Body`: But you can instruct **FastAPI** to treat it as another body key using `Body`:
```Python hl_lines="22" ```Python hl_lines="21"
{!./tutorial/src/body_multiple_params/tutorial003.py!} {!./tutorial/src/body_multiple_params/tutorial003.py!}
``` ```
@ -108,7 +108,7 @@ q: str = None
as in: as in:
```Python hl_lines="27" ```Python hl_lines="25"
{!./tutorial/src/body_multiple_params/tutorial004.py!} {!./tutorial/src/body_multiple_params/tutorial004.py!}
``` ```
@ -130,7 +130,7 @@ item: Item = Body(..., embed=True)
as in: as in:
```Python hl_lines="16" ```Python hl_lines="15"
{!./tutorial/src/body_multiple_params/tutorial005.py!} {!./tutorial/src/body_multiple_params/tutorial005.py!}
``` ```

18
docs/tutorial/body-nested-models.md

@ -4,7 +4,7 @@ With **FastAPI**, you can define, validate, document, and use arbitrarily deeply
You can define an attribute to be a subtype. For example, a Python `list`: You can define an attribute to be a subtype. For example, a Python `list`:
```Python hl_lines="13" ```Python hl_lines="12"
{!./tutorial/src/body_nested_models/tutorial001.py!} {!./tutorial/src/body_nested_models/tutorial001.py!}
``` ```
@ -41,7 +41,7 @@ Use that same standard syntax for model attributes with subtypes.
So, in our example, we can make `tags` be specifically a "list of strings": So, in our example, we can make `tags` be specifically a "list of strings":
```Python hl_lines="15" ```Python hl_lines="14"
{!./tutorial/src/body_nested_models/tutorial002.py!} {!./tutorial/src/body_nested_models/tutorial002.py!}
``` ```
@ -53,7 +53,7 @@ And Python has a special data type for sets of unique items, the `set`.
Then we can import `Set` and declare `tags` as a `set` of `str`: Then we can import `Set` and declare `tags` as a `set` of `str`:
```Python hl_lines="1 15" ```Python hl_lines="1 14"
{!./tutorial/src/body_nested_models/tutorial003.py!} {!./tutorial/src/body_nested_models/tutorial003.py!}
``` ```
@ -77,7 +77,7 @@ All that, arbitrarily nested.
For example, we can define an `Image` model: For example, we can define an `Image` model:
```Python hl_lines="10 11 12" ```Python hl_lines="9 10 11"
{!./tutorial/src/body_nested_models/tutorial004.py!} {!./tutorial/src/body_nested_models/tutorial004.py!}
``` ```
@ -85,7 +85,7 @@ For example, we can define an `Image` model:
And then we can use it as the type of an attribute: And then we can use it as the type of an attribute:
```Python hl_lines="21" ```Python hl_lines="20"
{!./tutorial/src/body_nested_models/tutorial004.py!} {!./tutorial/src/body_nested_models/tutorial004.py!}
``` ```
@ -120,7 +120,7 @@ To see all the options you have, checkout the docs for <a href="https://pydantic
For example, as in the `Image` model we have a `url` field, we can declare it to be instead of a `str`, a Pydantic's `UrlStr`: For example, as in the `Image` model we have a `url` field, we can declare it to be instead of a `str`, a Pydantic's `UrlStr`:
```Python hl_lines="4 12" ```Python hl_lines="5 11"
{!./tutorial/src/body_nested_models/tutorial005.py!} {!./tutorial/src/body_nested_models/tutorial005.py!}
``` ```
@ -130,7 +130,7 @@ The string will be checked to be a valid URL, and documented in JSON Schema / Op
You can also use Pydantic models as subtypes of `list`, `set`, etc: You can also use Pydantic models as subtypes of `list`, `set`, etc:
```Python hl_lines="22" ```Python hl_lines="21"
{!./tutorial/src/body_nested_models/tutorial006.py!} {!./tutorial/src/body_nested_models/tutorial006.py!}
``` ```
@ -167,7 +167,7 @@ This will expect (convert, validate, document, etc) a JSON body like:
You can define arbitrarily deeply nested models: You can define arbitrarily deeply nested models:
```Python hl_lines="11 16 22 25 29" ```Python hl_lines="10 15 21 24 28"
{!./tutorial/src/body_nested_models/tutorial007.py!} {!./tutorial/src/body_nested_models/tutorial007.py!}
``` ```
@ -184,7 +184,7 @@ images: List[Image]
as in: as in:
```Python hl_lines="17" ```Python hl_lines="16"
{!./tutorial/src/body_nested_models/tutorial008.py!} {!./tutorial/src/body_nested_models/tutorial008.py!}
``` ```

6
docs/tutorial/body-schema.md

@ -4,7 +4,7 @@ The same way you can declare additional validation and metadata in path operatio
First, you have to import it: First, you have to import it:
```Python hl_lines="3" ```Python hl_lines="2"
{!./tutorial/src/body_schema/tutorial001.py!} {!./tutorial/src/body_schema/tutorial001.py!}
``` ```
@ -16,7 +16,7 @@ First, you have to import it:
You can then use `Schema` with model attributes: You can then use `Schema` with model attributes:
```Python hl_lines="10 11" ```Python hl_lines="9 10"
{!./tutorial/src/body_schema/tutorial001.py!} {!./tutorial/src/body_schema/tutorial001.py!}
``` ```
@ -44,7 +44,7 @@ If you know JSON Schema and want to add extra information appart from what we ha
For example, you can use that functionality to pass a <a href="http://json-schema.org/latest/json-schema-validation.html#rfc.section.8.5" target="_blank">JSON Schema example</a> field to a body request JSON Schema: For example, you can use that functionality to pass a <a href="http://json-schema.org/latest/json-schema-validation.html#rfc.section.8.5" target="_blank">JSON Schema example</a> field to a body request JSON Schema:
```Python hl_lines="21 22 23 24 25 26" ```Python hl_lines="20 21 22 23 24 25"
{!./tutorial/src/body_schema/tutorial002.py!} {!./tutorial/src/body_schema/tutorial002.py!}
``` ```

12
docs/tutorial/body.md

@ -4,7 +4,7 @@ To declare a request body, you use <a href="https://pydantic-docs.helpmanual.io/
First, you need to import `BaseModel` from `pydantic`: First, you need to import `BaseModel` from `pydantic`:
```Python hl_lines="1" ```Python hl_lines="2"
{!./tutorial/src/body/tutorial001.py!} {!./tutorial/src/body/tutorial001.py!}
``` ```
@ -14,7 +14,7 @@ Then you declare your data model as a class that inherits from `BaseModel`.
Use standard Python types for all the attributes: Use standard Python types for all the attributes:
```Python hl_lines="6 7 8 9 10" ```Python hl_lines="5 6 7 8 9"
{!./tutorial/src/body/tutorial001.py!} {!./tutorial/src/body/tutorial001.py!}
``` ```
@ -44,7 +44,7 @@ For example, this model above declares a JSON "`object`" (or Python `dict`) like
To add it to your path operation, declare it the same way you declared path and query parameters: To add it to your path operation, declare it the same way you declared path and query parameters:
```Python hl_lines="17" ```Python hl_lines="16"
{!./tutorial/src/body/tutorial001.py!} {!./tutorial/src/body/tutorial001.py!}
``` ```
@ -100,7 +100,7 @@ But you would get the same editor support with <a href="https://www.jetbrains.co
Inside of the function, you can access all the attributes of the model object directly: Inside of the function, you can access all the attributes of the model object directly:
```Python hl_lines="20" ```Python hl_lines="19"
{!./tutorial/src/body/tutorial002.py!} {!./tutorial/src/body/tutorial002.py!}
``` ```
@ -110,7 +110,7 @@ You can declare path parameters and body requests at the same time.
**FastAPI** will recognize that the function parameters that match path parameters should be **taken from the path**, and that function parameters that are declared to be Pydantic models should be **taken from the request body**. **FastAPI** will recognize that the function parameters that match path parameters should be **taken from the path**, and that function parameters that are declared to be Pydantic models should be **taken from the request body**.
```Python hl_lines="16 17" ```Python hl_lines="15 16"
{!./tutorial/src/body/tutorial003.py!} {!./tutorial/src/body/tutorial003.py!}
``` ```
@ -120,7 +120,7 @@ You can also declare **body**, **path** and **query** parameters, all at the sam
**FastAPI** will recognize each of them and take the data from the correct place. **FastAPI** will recognize each of them and take the data from the correct place.
```Python hl_lines="17" ```Python hl_lines="16"
{!./tutorial/src/body/tutorial004.py!} {!./tutorial/src/body/tutorial004.py!}
``` ```

14
docs/tutorial/custom-response.md

@ -13,7 +13,7 @@ For example, if you are squeezing performance, you can use `ujson` and set the r
### Import `UJSONResponse` ### Import `UJSONResponse`
```Python hl_lines="1" ```Python hl_lines="2"
{!./tutorial/src/custom_response/tutorial001.py!} {!./tutorial/src/custom_response/tutorial001.py!}
``` ```
@ -24,7 +24,7 @@ For example, if you are squeezing performance, you can use `ujson` and set the r
Make your path operation use `UJSONResponse` as the response class using the parameter `content_type`: Make your path operation use `UJSONResponse` as the response class using the parameter `content_type`:
```Python hl_lines="8" ```Python hl_lines="7"
{!./tutorial/src/custom_response/tutorial001.py!} {!./tutorial/src/custom_response/tutorial001.py!}
``` ```
@ -39,7 +39,7 @@ To return a response with HTML directly from **FastAPI**, use `HTMLResponse`.
### Import `HTMLResponse` ### Import `HTMLResponse`
```Python hl_lines="1" ```Python hl_lines="2"
{!./tutorial/src/custom_response/tutorial002.py!} {!./tutorial/src/custom_response/tutorial002.py!}
``` ```
@ -51,7 +51,7 @@ To return a response with HTML directly from **FastAPI**, use `HTMLResponse`.
Pass `HTMLResponse` as the parameter `content_type` of your path operation: Pass `HTMLResponse` as the parameter `content_type` of your path operation:
```Python hl_lines="8" ```Python hl_lines="7"
{!./tutorial/src/custom_response/tutorial002.py!} {!./tutorial/src/custom_response/tutorial002.py!}
``` ```
@ -71,7 +71,7 @@ If you return an object that is an instance of Starlette's `Response`, it will b
The same example from above, returning an `HTMLResponse`, could look like: The same example from above, returning an `HTMLResponse`, could look like:
```Python hl_lines="8 20" ```Python hl_lines="7"
{!./tutorial/src/custom_response/tutorial003.py!} {!./tutorial/src/custom_response/tutorial003.py!}
``` ```
@ -92,7 +92,7 @@ The `content_type` class will then be used only to document the OpenAPI path ope
For example, it could be something like: For example, it could be something like:
```Python hl_lines="8 19 22" ```Python hl_lines="7 23"
{!./tutorial/src/custom_response/tutorial004.py!} {!./tutorial/src/custom_response/tutorial004.py!}
``` ```
@ -104,7 +104,7 @@ By returning the result of calling `generate_html_response()`, you are already r
But by declaring it also in the path operation decorator: But by declaring it also in the path operation decorator:
```Python hl_lines="22" ```Python hl_lines="21"
{!./tutorial/src/custom_response/tutorial004.py!} {!./tutorial/src/custom_response/tutorial004.py!}
``` ```

4
docs/tutorial/extra-models.md

@ -13,7 +13,7 @@ This is especially the case for user models, because:
Here's a general idea of how the models could look like with their password fields and the places where they are used: Here's a general idea of how the models could look like with their password fields and the places where they are used:
```Python hl_lines="9 11 16 22 24 33 35 40 41" ```Python hl_lines="8 10 15 21 23 32 34 39 40"
{!./tutorial/src/extra_models/tutorial001.py!} {!./tutorial/src/extra_models/tutorial001.py!}
``` ```
@ -36,7 +36,7 @@ All the data conversion, validation, documentation, etc. will still work as norm
That way, we can declare just the differences between the models (with plaintext `password`, with `hashed_password` and without password): That way, we can declare just the differences between the models (with plaintext `password`, with `hashed_password` and without password):
```Python hl_lines="9 15 16 19 20 23 24" ```Python hl_lines="8 14 15 18 19 22 23"
{!./tutorial/src/extra_models/tutorial002.py!} {!./tutorial/src/extra_models/tutorial002.py!}
``` ```

14
docs/tutorial/nosql-databases.md

@ -14,7 +14,7 @@ You can adapt it to any other NoSQL database like:
For now, don't pay attention to the rest, only the imports: For now, don't pay attention to the rest, only the imports:
```Python hl_lines="5 6 7" ```Python hl_lines="6 7 8"
{!./tutorial/src/nosql_databases/tutorial001.py!} {!./tutorial/src/nosql_databases/tutorial001.py!}
``` ```
@ -49,7 +49,7 @@ This utility function will:
* Set defaults for timeouts. * Set defaults for timeouts.
* Return it. * Return it.
```Python hl_lines="13 14 15 16 17 18 19 20 21 22" ```Python hl_lines="13 14 15 16 17 18 19 20"
{!./tutorial/src/nosql_databases/tutorial001.py!} {!./tutorial/src/nosql_databases/tutorial001.py!}
``` ```
@ -61,7 +61,7 @@ As **Couchbase** "documents" are actually just "JSON objects", we can model them
First, let's create a `User` model: First, let's create a `User` model:
```Python hl_lines="25 26 27 28 29" ```Python hl_lines="23 24 25 26 27"
{!./tutorial/src/nosql_databases/tutorial001.py!} {!./tutorial/src/nosql_databases/tutorial001.py!}
``` ```
@ -75,7 +75,7 @@ This will have the data that is actually stored in the database.
We don't create it as a subclass of Pydantic's `BaseModel` but as a subclass of our own `User`, because it will have all the attributes in `User` plus a couple more: We don't create it as a subclass of Pydantic's `BaseModel` but as a subclass of our own `User`, because it will have all the attributes in `User` plus a couple more:
```Python hl_lines="32 33 34" ```Python hl_lines="30 31 32"
{!./tutorial/src/nosql_databases/tutorial001.py!} {!./tutorial/src/nosql_databases/tutorial001.py!}
``` ```
@ -96,7 +96,7 @@ Now create a function that will:
By creating a function that is only dedicated to getting your user from a `username` (or any other parameter) independent of your path operation function, you can more easily re-use it in multiple parts and also add <abbr title="Automated test, written in code, that checks if another piece of code is working correctly.">unit tests</abbr> for it: By creating a function that is only dedicated to getting your user from a `username` (or any other parameter) independent of your path operation function, you can more easily re-use it in multiple parts and also add <abbr title="Automated test, written in code, that checks if another piece of code is working correctly.">unit tests</abbr> for it:
```Python hl_lines="37 38 39 40 41 42 43" ```Python hl_lines="35 36 37 38 39 40 41"
{!./tutorial/src/nosql_databases/tutorial001.py!} {!./tutorial/src/nosql_databases/tutorial001.py!}
``` ```
@ -131,7 +131,7 @@ UserInDB(username="johndoe", hashed_password="some_hash")
### Create the `FastAPI` app ### Create the `FastAPI` app
```Python hl_lines="47" ```Python hl_lines="45"
{!./tutorial/src/nosql_databases/tutorial001.py!} {!./tutorial/src/nosql_databases/tutorial001.py!}
``` ```
@ -141,7 +141,7 @@ As our code is calling Couchbase and we are not using the <a href="https://docs.
Also, Couchbase recommends not using a single `Bucket` object in multiple "<abbr title="A sequence of code being executed by the program, while at the same time, or at intervals, there can be others being executed too.">thread</abbr>s", so, we can get just get the bucket directly and pass it to our utility functions: Also, Couchbase recommends not using a single `Bucket` object in multiple "<abbr title="A sequence of code being executed by the program, while at the same time, or at intervals, there can be others being executed too.">thread</abbr>s", so, we can get just get the bucket directly and pass it to our utility functions:
```Python hl_lines="50 51 52 53 54" ```Python hl_lines="48 49 50 51 52"
{!./tutorial/src/nosql_databases/tutorial001.py!} {!./tutorial/src/nosql_databases/tutorial001.py!}
``` ```

10
docs/tutorial/path-operation-configuration.md

@ -11,7 +11,7 @@ You can pass directly the `int` code, like `404`.
But if you don't remember what each number code is for, you can use the shortcut constants from `starlette`: But if you don't remember what each number code is for, you can use the shortcut constants from `starlette`:
```Python hl_lines="4 19" ```Python hl_lines="5 18"
{!./tutorial/src/path_operation_configuration/tutorial001.py!} {!./tutorial/src/path_operation_configuration/tutorial001.py!}
``` ```
@ -22,7 +22,7 @@ That status code will be used in the response and will be added to the OpenAPI s
You can add tags to your path operation, pass the parameter `tags` with a `list` of `str` (commonly just one `str`): You can add tags to your path operation, pass the parameter `tags` with a `list` of `str` (commonly just one `str`):
```Python hl_lines="18 23 28" ```Python hl_lines="17 22 27"
{!./tutorial/src/path_operation_configuration/tutorial002.py!} {!./tutorial/src/path_operation_configuration/tutorial002.py!}
``` ```
@ -34,7 +34,7 @@ They will be added to the OpenAPI schema and used by the automatic documentation
You can add a `summary` and `description`: You can add a `summary` and `description`:
```Python hl_lines="21 22" ```Python hl_lines="20 21"
{!./tutorial/src/path_operation_configuration/tutorial003.py!} {!./tutorial/src/path_operation_configuration/tutorial003.py!}
``` ```
@ -42,7 +42,7 @@ You can add a `summary` and `description`:
As descriptions tend to be long and cover multiple lines, you can declare the path operation description in the function <abbr title="a multi-line string as the first expression inside a function (not assigned to any variable) used for documentation">docstring</abbr> and **FastAPI** will read it from there. As descriptions tend to be long and cover multiple lines, you can declare the path operation description in the function <abbr title="a multi-line string as the first expression inside a function (not assigned to any variable) used for documentation">docstring</abbr> and **FastAPI** will read it from there.
```Python hl_lines="20 21 22 23 24 25 26 27 28" ```Python hl_lines="19 20 21 22 23 24 25 26 27"
{!./tutorial/src/path_operation_configuration/tutorial004.py!} {!./tutorial/src/path_operation_configuration/tutorial004.py!}
``` ```
@ -57,7 +57,7 @@ It will be used in the interactive docs:
You can specify the response description with the parameter `response_description`: You can specify the response description with the parameter `response_description`:
```Python hl_lines="22" ```Python hl_lines="21"
{!./tutorial/src/path_operation_configuration/tutorial005.py!} {!./tutorial/src/path_operation_configuration/tutorial005.py!}
``` ```

12
docs/tutorial/response-model.md

@ -6,7 +6,7 @@ You can declare the model used for the response with the parameter `response_mod
* `@app.delete()` * `@app.delete()`
* etc. * etc.
```Python hl_lines="18" ```Python hl_lines="17"
{!./tutorial/src/response_model/tutorial001.py!} {!./tutorial/src/response_model/tutorial001.py!}
``` ```
@ -28,13 +28,13 @@ But most importantly:
Here we are declaring a `UserIn` model, it will contain a plaintext password: Here we are declaring a `UserIn` model, it will contain a plaintext password:
```Python hl_lines="9 11" ```Python hl_lines="8 10"
{!./tutorial/src/response_model/tutorial002.py!} {!./tutorial/src/response_model/tutorial002.py!}
``` ```
And we are using this model to declare our input and the same model to declare our output: And we are using this model to declare our input and the same model to declare our output:
```Python hl_lines="17 18" ```Python hl_lines="16 17"
{!./tutorial/src/response_model/tutorial002.py!} {!./tutorial/src/response_model/tutorial002.py!}
``` ```
@ -51,19 +51,19 @@ But if we use sthe same model for another path operation, we could be sending th
We can instead create an input model with the plaintext password and an output model without it: We can instead create an input model with the plaintext password and an output model without it:
```Python hl_lines="9 11 16" ```Python hl_lines="8 10 15"
{!./tutorial/src/response_model/tutorial003.py!} {!./tutorial/src/response_model/tutorial003.py!}
``` ```
Here, even though our path operation function is returning the same input user that contains the password: Here, even though our path operation function is returning the same input user that contains the password:
```Python hl_lines="24" ```Python hl_lines="23"
{!./tutorial/src/response_model/tutorial003.py!} {!./tutorial/src/response_model/tutorial003.py!}
``` ```
...we declared the `response_model` to be our model `UserOut`, that doesn't include the password: ...we declared the `response_model` to be our model `UserOut`, that doesn't include the password:
```Python hl_lines="22" ```Python hl_lines="21"
{!./tutorial/src/response_model/tutorial003.py!} {!./tutorial/src/response_model/tutorial003.py!}
``` ```

8
docs/tutorial/sql-databases.md

@ -23,7 +23,7 @@ In this example, we'll use **PostgreSQL**.
For now, don't pay attention to the rest, only the imports: For now, don't pay attention to the rest, only the imports:
```Python hl_lines="2 3 4" ```Python hl_lines="3 4 5"
{!./tutorial/src/sql_databases/tutorial001.py!} {!./tutorial/src/sql_databases/tutorial001.py!}
``` ```
@ -31,7 +31,7 @@ For now, don't pay attention to the rest, only the imports:
Define the database that SQLAlchemy should connect to: Define the database that SQLAlchemy should connect to:
```Python hl_lines="7" ```Python hl_lines="8"
{!./tutorial/src/sql_databases/tutorial001.py!} {!./tutorial/src/sql_databases/tutorial001.py!}
``` ```
@ -40,13 +40,13 @@ Define the database that SQLAlchemy should connect to:
## Create the SQLAlchemy `engine` ## Create the SQLAlchemy `engine`
```Python hl_lines="9" ```Python hl_lines="10"
{!./tutorial/src/sql_databases/tutorial001.py!} {!./tutorial/src/sql_databases/tutorial001.py!}
``` ```
## Create a `scoped_session` ## Create a `scoped_session`
```Python hl_lines="10 11 12" ```Python hl_lines="11 12 13"
{!./tutorial/src/sql_databases/tutorial001.py!} {!./tutorial/src/sql_databases/tutorial001.py!}
``` ```

Loading…
Cancel
Save