Browse Source

Add support for `from pydantic.v1 import BaseModel`, mixed Pydantic v1 and v2 models in the same app (#14168)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
pull/13940/merge
Sebastián Ramírez 5 days ago
committed by GitHub
parent
commit
d34918abf0
No known key found for this signature in database GPG Key ID: B5690EEEBB952194
  1. 133
      docs/en/docs/how-to/migrate-from-pydantic-v1-to-pydantic-v2.md
  2. 1
      docs/en/mkdocs.yml
  3. 9
      docs_src/pydantic_v1_in_v2/tutorial001_an.py
  4. 7
      docs_src/pydantic_v1_in_v2/tutorial001_an_py310.py
  5. 18
      docs_src/pydantic_v1_in_v2/tutorial002_an.py
  6. 16
      docs_src/pydantic_v1_in_v2/tutorial002_an_py310.py
  7. 25
      docs_src/pydantic_v1_in_v2/tutorial003_an.py
  8. 23
      docs_src/pydantic_v1_in_v2/tutorial003_an_py310.py
  9. 20
      docs_src/pydantic_v1_in_v2/tutorial004_an.py
  10. 19
      docs_src/pydantic_v1_in_v2/tutorial004_an_py310.py
  11. 19
      docs_src/pydantic_v1_in_v2/tutorial004_an_py39.py
  12. 680
      fastapi/_compat.py
  13. 50
      fastapi/_compat/__init__.py
  14. 305
      fastapi/_compat/main.py
  15. 53
      fastapi/_compat/model_field.py
  16. 209
      fastapi/_compat/shared.py
  17. 334
      fastapi/_compat/v1.py
  18. 459
      fastapi/_compat/v2.py
  19. 13
      fastapi/datastructures.py
  20. 105
      fastapi/dependencies/utils.py
  21. 15
      fastapi/encoders.py
  22. 23
      fastapi/openapi/utils.py
  23. 6
      fastapi/routing.py
  24. 724
      fastapi/temp_pydantic_v1_params.py
  25. 98
      fastapi/utils.py
  26. 53
      tests/test_compat.py
  27. 1122
      tests/test_compat_params_v1.py
  28. 7
      tests/test_get_model_definitions_formfeed_escape.py
  29. 353
      tests/test_openapi_separate_input_output_schemas.py
  30. 475
      tests/test_pydantic_v1_v2_01.py
  31. 701
      tests/test_pydantic_v1_v2_list.py
  32. 1499
      tests/test_pydantic_v1_v2_mixed.py
  33. 0
      tests/test_pydantic_v1_v2_multifile/__init__.py
  34. 142
      tests/test_pydantic_v1_v2_multifile/main.py
  35. 19
      tests/test_pydantic_v1_v2_multifile/modelsv1.py
  36. 19
      tests/test_pydantic_v1_v2_multifile/modelsv2.py
  37. 19
      tests/test_pydantic_v1_v2_multifile/modelsv2b.py
  38. 1237
      tests/test_pydantic_v1_v2_multifile/test_multifile.py
  39. 766
      tests/test_pydantic_v1_v2_noneable.py
  40. 18
      tests/test_response_model_as_return_annotation.py
  41. 0
      tests/test_tutorial/test_pydantic_v1_in_v2/__init__.py
  42. 37
      tests/test_tutorial/test_pydantic_v1_in_v2/test_tutorial001.py
  43. 140
      tests/test_tutorial/test_pydantic_v1_in_v2/test_tutorial002.py
  44. 154
      tests/test_tutorial/test_pydantic_v1_in_v2/test_tutorial003.py
  45. 153
      tests/test_tutorial/test_pydantic_v1_in_v2/test_tutorial004.py
  46. 9
      tests/utils.py

133
docs/en/docs/how-to/migrate-from-pydantic-v1-to-pydantic-v2.md

@ -0,0 +1,133 @@
# Migrate from Pydantic v1 to Pydantic v2 { #migrate-from-pydantic-v1-to-pydantic-v2 }
If you have an old FastAPI app, you might be using Pydantic version 1.
FastAPI has had support for either Pydantic v1 or v2 since version 0.100.0.
If you had installed Pydantic v2, it would use it. If instead you had Pydantic v1, it would use that.
Pydantic v1 is now deprecated and support for it will be removed in the next versions of FastAPI, you should **migrate to Pydantic v2**. This way you will get the latest features, improvements, and fixes.
/// warning
Also, the Pydantic team stopped support for Pydantic v1 for the latest versions of Python, starting with **Python 3.14**.
If you want to use the latest features of Python, you will need to make sure you use Pydantic v2.
///
If you have an old FastAPI app with Pydantic v1, here I'll show you how to migrate it to Pydantic v2, and the **new features in FastAPI 0.119.0** to help you with a gradual migration.
## Official Guide { #official-guide }
Pydantic has an official <a href="https://docs.pydantic.dev/latest/migration/" class="external-link" target="_blank">Migration Guide</a> from v1 to v2.
It also includes what has changed, how validations are now more correct and strict, possible caveats, etc.
You can read it to understand better what has changed.
## Tests { #tests }
Make sure you have [tests](../tutorial/testing.md){.internal-link target=_blank} for your app and you run them on continuous integration (CI).
This way, you can do the upgrade and make sure everything is still working as expected.
## `bump-pydantic` { #bump-pydantic }
In many cases, when you use regular Pydantic models without customizations, you will be able to automate most of the process of migrating from Pydantic v1 to Pydantic v2.
You can use <a href="https://github.com/pydantic/bump-pydantic" class="external-link" target="_blank">`bump-pydantic`</a> from the same Pydantic team.
This tool will help you to automatically change most of the code that needs to be changed.
After this, you can run the tests and check if everything works. If it does, you are done. 😎
## Pydantic v1 in v2 { #pydantic-v1-in-v2 }
Pydantic v2 includes everything from Pydantic v1 as a submodule `pydantic.v1`.
This means that you can install the latest version of Pydantic v2 and import and use the old Pydantic v1 components from this submodule, as if you had the old Pydantic v1 installed.
{* ../../docs_src/pydantic_v1_in_v2/tutorial001_an_py310.py hl[1,4] *}
### FastAPI support for Pydantic v1 in v2 { #fastapi-support-for-pydantic-v1-in-v2 }
Since FastAPI 0.119.0, there's also partial support for Pydantic v1 from inside of Pydantic v2, to facilitate the migration to v2.
So, you could upgrade Pydantic to the latest version 2, and change the imports to use the `pydantic.v1` submodule, and in many cases it would just work.
{* ../../docs_src/pydantic_v1_in_v2/tutorial002_an_py310.py hl[2,5,15] *}
/// warning
Have in mind that as the Pydantic team no longer supports Pydantic v1 in recent versions of Python, starting from Python 3.14, using `pydantic.v1` is also not supported in Python 3.14 and above.
///
### Pydantic v1 and v2 on the same app { #pydantic-v1-and-v2-on-the-same-app }
It's **not supported** by Pydantic to have a model of Pydantic v2 with its own fields defined as Pydantic v1 models or vice versa.
```mermaid
graph TB
subgraph "❌ Not Supported"
direction TB
subgraph V2["Pydantic v2 Model"]
V1Field["Pydantic v1 Model"]
end
subgraph V1["Pydantic v1 Model"]
V2Field["Pydantic v2 Model"]
end
end
style V2 fill:#f9fff3
style V1 fill:#fff6f0
style V1Field fill:#fff6f0
style V2Field fill:#f9fff3
```
...but, you can have separated models using Pydantic v1 and v2 in the same app.
```mermaid
graph TB
subgraph "✅ Supported"
direction TB
subgraph V2["Pydantic v2 Model"]
V2Field["Pydantic v2 Model"]
end
subgraph V1["Pydantic v1 Model"]
V1Field["Pydantic v1 Model"]
end
end
style V2 fill:#f9fff3
style V1 fill:#fff6f0
style V1Field fill:#fff6f0
style V2Field fill:#f9fff3
```
In some cases, it's even possible to have both Pydantic v1 and v2 models in the same **path operation** in your FastAPI app:
{* ../../docs_src/pydantic_v1_in_v2/tutorial003_an_py310.py hl[2:3,6,12,21:22] *}
In this example above, the input model is a Pydantic v1 model, and the output model (defined in `response_model=ItemV2`) is a Pydantic v2 model.
### Pydantic v1 parameters { #pydantic-v1-parameters }
If you need to use some of the FastAPI-specific tools for parameters like `Body`, `Query`, `Form`, etc. with Pydantic v1 models, you can import them from `fastapi.temp_pydantic_v1_params` while you finish the migration to Pydantic v2:
{* ../../docs_src/pydantic_v1_in_v2/tutorial004_an_py310.py hl[4,18] *}
### Migrate in steps { #migrate-in-steps }
/// tip
First try with `bump-pydantic`, if your tests pass and that works, then you're done in one command. ✨
///
If `bump-pydantic` doesn't work for your use case, you can use the support for both Pydantic v1 and v2 models in the same app to do the migration to Pydantic v2 gradually.
You could fist upgrade Pydantic to use the latest version 2, and change the imports to use `pydantic.v1` for all your models.
Then, you can start migrating your models from Pydantic v1 to v2 in groups, in gradual steps. 🚶

1
docs/en/mkdocs.yml

@ -201,6 +201,7 @@ nav:
- How To - Recipes:
- how-to/index.md
- how-to/general.md
- how-to/migrate-from-pydantic-v1-to-pydantic-v2.md
- how-to/graphql.md
- how-to/custom-request-and-route.md
- how-to/conditional-openapi.md

9
docs_src/pydantic_v1_in_v2/tutorial001_an.py

@ -0,0 +1,9 @@
from typing import Union
from pydantic.v1 import BaseModel
class Item(BaseModel):
name: str
description: Union[str, None] = None
size: float

7
docs_src/pydantic_v1_in_v2/tutorial001_an_py310.py

@ -0,0 +1,7 @@
from pydantic.v1 import BaseModel
class Item(BaseModel):
name: str
description: str | None = None
size: float

18
docs_src/pydantic_v1_in_v2/tutorial002_an.py

@ -0,0 +1,18 @@
from typing import Union
from fastapi import FastAPI
from pydantic.v1 import BaseModel
class Item(BaseModel):
name: str
description: Union[str, None] = None
size: float
app = FastAPI()
@app.post("/items/")
async def create_item(item: Item) -> Item:
return item

16
docs_src/pydantic_v1_in_v2/tutorial002_an_py310.py

@ -0,0 +1,16 @@
from fastapi import FastAPI
from pydantic.v1 import BaseModel
class Item(BaseModel):
name: str
description: str | None = None
size: float
app = FastAPI()
@app.post("/items/")
async def create_item(item: Item) -> Item:
return item

25
docs_src/pydantic_v1_in_v2/tutorial003_an.py

@ -0,0 +1,25 @@
from typing import Union
from fastapi import FastAPI
from pydantic import BaseModel as BaseModelV2
from pydantic.v1 import BaseModel
class Item(BaseModel):
name: str
description: Union[str, None] = None
size: float
class ItemV2(BaseModelV2):
name: str
description: Union[str, None] = None
size: float
app = FastAPI()
@app.post("/items/", response_model=ItemV2)
async def create_item(item: Item):
return item

23
docs_src/pydantic_v1_in_v2/tutorial003_an_py310.py

@ -0,0 +1,23 @@
from fastapi import FastAPI
from pydantic import BaseModel as BaseModelV2
from pydantic.v1 import BaseModel
class Item(BaseModel):
name: str
description: str | None = None
size: float
class ItemV2(BaseModelV2):
name: str
description: str | None = None
size: float
app = FastAPI()
@app.post("/items/", response_model=ItemV2)
async def create_item(item: Item):
return item

20
docs_src/pydantic_v1_in_v2/tutorial004_an.py

@ -0,0 +1,20 @@
from typing import Union
from fastapi import FastAPI
from fastapi.temp_pydantic_v1_params import Body
from pydantic.v1 import BaseModel
from typing_extensions import Annotated
class Item(BaseModel):
name: str
description: Union[str, None] = None
size: float
app = FastAPI()
@app.post("/items/")
async def create_item(item: Annotated[Item, Body(embed=True)]) -> Item:
return item

19
docs_src/pydantic_v1_in_v2/tutorial004_an_py310.py

@ -0,0 +1,19 @@
from typing import Annotated
from fastapi import FastAPI
from fastapi.temp_pydantic_v1_params import Body
from pydantic.v1 import BaseModel
class Item(BaseModel):
name: str
description: str | None = None
size: float
app = FastAPI()
@app.post("/items/")
async def create_item(item: Annotated[Item, Body(embed=True)]) -> Item:
return item

19
docs_src/pydantic_v1_in_v2/tutorial004_an_py39.py

@ -0,0 +1,19 @@
from typing import Annotated, Union
from fastapi import FastAPI
from fastapi.temp_pydantic_v1_params import Body
from pydantic.v1 import BaseModel
class Item(BaseModel):
name: str
description: Union[str, None] = None
size: float
app = FastAPI()
@app.post("/items/")
async def create_item(item: Annotated[Item, Body(embed=True)]) -> Item:
return item

680
fastapi/_compat.py

@ -1,680 +0,0 @@
import warnings
from collections import deque
from copy import copy
from dataclasses import dataclass, is_dataclass
from enum import Enum
from functools import lru_cache
from typing import (
Any,
Callable,
Deque,
Dict,
FrozenSet,
List,
Mapping,
Sequence,
Set,
Tuple,
Type,
Union,
cast,
)
from fastapi.exceptions import RequestErrorModel
from fastapi.types import IncEx, ModelNameMap, UnionType
from pydantic import BaseModel, create_model
from pydantic.version import VERSION as PYDANTIC_VERSION
from starlette.datastructures import UploadFile
from typing_extensions import Annotated, Literal, get_args, get_origin
PYDANTIC_VERSION_MINOR_TUPLE = tuple(int(x) for x in PYDANTIC_VERSION.split(".")[:2])
PYDANTIC_V2 = PYDANTIC_VERSION_MINOR_TUPLE[0] == 2
sequence_annotation_to_type = {
Sequence: list,
List: list,
list: list,
Tuple: tuple,
tuple: tuple,
Set: set,
set: set,
FrozenSet: frozenset,
frozenset: frozenset,
Deque: deque,
deque: deque,
}
sequence_types = tuple(sequence_annotation_to_type.keys())
Url: Type[Any]
if PYDANTIC_V2:
from pydantic import PydanticSchemaGenerationError as PydanticSchemaGenerationError
from pydantic import TypeAdapter
from pydantic import ValidationError as ValidationError
from pydantic._internal._schema_generation_shared import ( # type: ignore[attr-defined]
GetJsonSchemaHandler as GetJsonSchemaHandler,
)
from pydantic._internal._typing_extra import eval_type_lenient
from pydantic._internal._utils import lenient_issubclass as lenient_issubclass
from pydantic.fields import FieldInfo
from pydantic.json_schema import GenerateJsonSchema as GenerateJsonSchema
from pydantic.json_schema import JsonSchemaValue as JsonSchemaValue
from pydantic_core import CoreSchema as CoreSchema
from pydantic_core import PydanticUndefined, PydanticUndefinedType
from pydantic_core import Url as Url
try:
from pydantic_core.core_schema import (
with_info_plain_validator_function as with_info_plain_validator_function,
)
except ImportError: # pragma: no cover
from pydantic_core.core_schema import (
general_plain_validator_function as with_info_plain_validator_function, # noqa: F401
)
RequiredParam = PydanticUndefined
Undefined = PydanticUndefined
UndefinedType = PydanticUndefinedType
evaluate_forwardref = eval_type_lenient
Validator = Any
class BaseConfig:
pass
class ErrorWrapper(Exception):
pass
@dataclass
class ModelField:
field_info: FieldInfo
name: str
mode: Literal["validation", "serialization"] = "validation"
@property
def alias(self) -> str:
a = self.field_info.alias
return a if a is not None else self.name
@property
def required(self) -> bool:
return self.field_info.is_required()
@property
def default(self) -> Any:
return self.get_default()
@property
def type_(self) -> Any:
return self.field_info.annotation
def __post_init__(self) -> None:
with warnings.catch_warnings():
# Pydantic >= 2.12.0 warns about field specific metadata that is unused
# (e.g. `TypeAdapter(Annotated[int, Field(alias='b')])`). In some cases, we
# end up building the type adapter from a model field annotation so we
# need to ignore the warning:
if PYDANTIC_VERSION_MINOR_TUPLE >= (2, 12):
from pydantic.warnings import UnsupportedFieldAttributeWarning
warnings.simplefilter(
"ignore", category=UnsupportedFieldAttributeWarning
)
self._type_adapter: TypeAdapter[Any] = TypeAdapter(
Annotated[self.field_info.annotation, self.field_info]
)
def get_default(self) -> Any:
if self.field_info.is_required():
return Undefined
return self.field_info.get_default(call_default_factory=True)
def validate(
self,
value: Any,
values: Dict[str, Any] = {}, # noqa: B006
*,
loc: Tuple[Union[int, str], ...] = (),
) -> Tuple[Any, Union[List[Dict[str, Any]], None]]:
try:
return (
self._type_adapter.validate_python(value, from_attributes=True),
None,
)
except ValidationError as exc:
return None, _regenerate_error_with_loc(
errors=exc.errors(include_url=False), loc_prefix=loc
)
def serialize(
self,
value: Any,
*,
mode: Literal["json", "python"] = "json",
include: Union[IncEx, None] = None,
exclude: Union[IncEx, None] = None,
by_alias: bool = True,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
) -> Any:
# What calls this code passes a value that already called
# self._type_adapter.validate_python(value)
return self._type_adapter.dump_python(
value,
mode=mode,
include=include,
exclude=exclude,
by_alias=by_alias,
exclude_unset=exclude_unset,
exclude_defaults=exclude_defaults,
exclude_none=exclude_none,
)
def __hash__(self) -> int:
# Each ModelField is unique for our purposes, to allow making a dict from
# ModelField to its JSON Schema.
return id(self)
def get_annotation_from_field_info(
annotation: Any, field_info: FieldInfo, field_name: str
) -> Any:
return annotation
def _normalize_errors(errors: Sequence[Any]) -> List[Dict[str, Any]]:
return errors # type: ignore[return-value]
def _model_rebuild(model: Type[BaseModel]) -> None:
model.model_rebuild()
def _model_dump(
model: BaseModel, mode: Literal["json", "python"] = "json", **kwargs: Any
) -> Any:
return model.model_dump(mode=mode, **kwargs)
def _get_model_config(model: BaseModel) -> Any:
return model.model_config
def get_schema_from_model_field(
*,
field: ModelField,
schema_generator: GenerateJsonSchema,
model_name_map: ModelNameMap,
field_mapping: Dict[
Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
],
separate_input_output_schemas: bool = True,
) -> Dict[str, Any]:
override_mode: Union[Literal["validation"], None] = (
None if separate_input_output_schemas else "validation"
)
# This expects that GenerateJsonSchema was already used to generate the definitions
json_schema = field_mapping[(field, override_mode or field.mode)]
if "$ref" not in json_schema:
# TODO remove when deprecating Pydantic v1
# Ref: https://github.com/pydantic/pydantic/blob/d61792cc42c80b13b23e3ffa74bc37ec7c77f7d1/pydantic/schema.py#L207
json_schema["title"] = (
field.field_info.title or field.alias.title().replace("_", " ")
)
return json_schema
def get_compat_model_name_map(fields: List[ModelField]) -> ModelNameMap:
return {}
def get_definitions(
*,
fields: List[ModelField],
schema_generator: GenerateJsonSchema,
model_name_map: ModelNameMap,
separate_input_output_schemas: bool = True,
) -> Tuple[
Dict[
Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
],
Dict[str, Dict[str, Any]],
]:
override_mode: Union[Literal["validation"], None] = (
None if separate_input_output_schemas else "validation"
)
inputs = [
(field, override_mode or field.mode, field._type_adapter.core_schema)
for field in fields
]
field_mapping, definitions = schema_generator.generate_definitions(
inputs=inputs
)
for item_def in cast(Dict[str, Dict[str, Any]], definitions).values():
if "description" in item_def:
item_description = cast(str, item_def["description"]).split("\f")[0]
item_def["description"] = item_description
return field_mapping, definitions # type: ignore[return-value]
def is_scalar_field(field: ModelField) -> bool:
from fastapi import params
return field_annotation_is_scalar(
field.field_info.annotation
) and not isinstance(field.field_info, params.Body)
def is_sequence_field(field: ModelField) -> bool:
return field_annotation_is_sequence(field.field_info.annotation)
def is_scalar_sequence_field(field: ModelField) -> bool:
return field_annotation_is_scalar_sequence(field.field_info.annotation)
def is_bytes_field(field: ModelField) -> bool:
return is_bytes_or_nonable_bytes_annotation(field.type_)
def is_bytes_sequence_field(field: ModelField) -> bool:
return is_bytes_sequence_annotation(field.type_)
def copy_field_info(*, field_info: FieldInfo, annotation: Any) -> FieldInfo:
cls = type(field_info)
merged_field_info = cls.from_annotation(annotation)
new_field_info = copy(field_info)
new_field_info.metadata = merged_field_info.metadata
new_field_info.annotation = merged_field_info.annotation
return new_field_info
def serialize_sequence_value(*, field: ModelField, value: Any) -> Sequence[Any]:
origin_type = (
get_origin(field.field_info.annotation) or field.field_info.annotation
)
assert issubclass(origin_type, sequence_types) # type: ignore[arg-type]
return sequence_annotation_to_type[origin_type](value) # type: ignore[no-any-return]
def get_missing_field_error(loc: Tuple[str, ...]) -> Dict[str, Any]:
error = ValidationError.from_exception_data(
"Field required", [{"type": "missing", "loc": loc, "input": {}}]
).errors(include_url=False)[0]
error["input"] = None
return error # type: ignore[return-value]
def create_body_model(
*, fields: Sequence[ModelField], model_name: str
) -> Type[BaseModel]:
field_params = {f.name: (f.field_info.annotation, f.field_info) for f in fields}
BodyModel: Type[BaseModel] = create_model(model_name, **field_params) # type: ignore[call-overload]
return BodyModel
def get_model_fields(model: Type[BaseModel]) -> List[ModelField]:
return [
ModelField(field_info=field_info, name=name)
for name, field_info in model.model_fields.items()
]
else:
from fastapi.openapi.constants import REF_PREFIX as REF_PREFIX
from pydantic import AnyUrl as Url # noqa: F401
from pydantic import ( # type: ignore[assignment]
BaseConfig as BaseConfig, # noqa: F401
)
from pydantic import ValidationError as ValidationError # noqa: F401
from pydantic.class_validators import ( # type: ignore[no-redef]
Validator as Validator, # noqa: F401
)
from pydantic.error_wrappers import ( # type: ignore[no-redef]
ErrorWrapper as ErrorWrapper, # noqa: F401
)
from pydantic.errors import MissingError
from pydantic.fields import ( # type: ignore[attr-defined]
SHAPE_FROZENSET,
SHAPE_LIST,
SHAPE_SEQUENCE,
SHAPE_SET,
SHAPE_SINGLETON,
SHAPE_TUPLE,
SHAPE_TUPLE_ELLIPSIS,
)
from pydantic.fields import FieldInfo as FieldInfo
from pydantic.fields import ( # type: ignore[no-redef,attr-defined]
ModelField as ModelField, # noqa: F401
)
# Keeping old "Required" functionality from Pydantic V1, without
# shadowing typing.Required.
RequiredParam: Any = Ellipsis # type: ignore[no-redef]
from pydantic.fields import ( # type: ignore[no-redef,attr-defined]
Undefined as Undefined,
)
from pydantic.fields import ( # type: ignore[no-redef, attr-defined]
UndefinedType as UndefinedType, # noqa: F401
)
from pydantic.schema import (
field_schema,
get_flat_models_from_fields,
get_model_name_map,
model_process_schema,
)
from pydantic.schema import ( # type: ignore[no-redef] # noqa: F401
get_annotation_from_field_info as get_annotation_from_field_info,
)
from pydantic.typing import ( # type: ignore[no-redef]
evaluate_forwardref as evaluate_forwardref, # noqa: F401
)
from pydantic.utils import ( # type: ignore[no-redef]
lenient_issubclass as lenient_issubclass, # noqa: F401
)
GetJsonSchemaHandler = Any # type: ignore[assignment,misc]
JsonSchemaValue = Dict[str, Any] # type: ignore[misc]
CoreSchema = Any # type: ignore[assignment,misc]
sequence_shapes = {
SHAPE_LIST,
SHAPE_SET,
SHAPE_FROZENSET,
SHAPE_TUPLE,
SHAPE_SEQUENCE,
SHAPE_TUPLE_ELLIPSIS,
}
sequence_shape_to_type = {
SHAPE_LIST: list,
SHAPE_SET: set,
SHAPE_TUPLE: tuple,
SHAPE_SEQUENCE: list,
SHAPE_TUPLE_ELLIPSIS: list,
}
@dataclass
class GenerateJsonSchema: # type: ignore[no-redef]
ref_template: str
class PydanticSchemaGenerationError(Exception): # type: ignore[no-redef]
pass
def with_info_plain_validator_function( # type: ignore[misc]
function: Callable[..., Any],
*,
ref: Union[str, None] = None,
metadata: Any = None,
serialization: Any = None,
) -> Any:
return {}
def get_model_definitions(
*,
flat_models: Set[Union[Type[BaseModel], Type[Enum]]],
model_name_map: Dict[Union[Type[BaseModel], Type[Enum]], str],
) -> Dict[str, Any]:
definitions: Dict[str, Dict[str, Any]] = {}
for model in flat_models:
m_schema, m_definitions, m_nested_models = model_process_schema(
model, model_name_map=model_name_map, ref_prefix=REF_PREFIX
)
definitions.update(m_definitions)
model_name = model_name_map[model]
definitions[model_name] = m_schema
for m_schema in definitions.values():
if "description" in m_schema:
m_schema["description"] = m_schema["description"].split("\f")[0]
return definitions
def is_pv1_scalar_field(field: ModelField) -> bool:
from fastapi import params
field_info = field.field_info
if not (
field.shape == SHAPE_SINGLETON # type: ignore[attr-defined]
and not lenient_issubclass(field.type_, BaseModel)
and not lenient_issubclass(field.type_, dict)
and not field_annotation_is_sequence(field.type_)
and not is_dataclass(field.type_)
and not isinstance(field_info, params.Body)
):
return False
if field.sub_fields: # type: ignore[attr-defined]
if not all(
is_pv1_scalar_field(f)
for f in field.sub_fields # type: ignore[attr-defined]
):
return False
return True
def is_pv1_scalar_sequence_field(field: ModelField) -> bool:
if (field.shape in sequence_shapes) and not lenient_issubclass( # type: ignore[attr-defined]
field.type_, BaseModel
):
if field.sub_fields is not None: # type: ignore[attr-defined]
for sub_field in field.sub_fields: # type: ignore[attr-defined]
if not is_pv1_scalar_field(sub_field):
return False
return True
if _annotation_is_sequence(field.type_):
return True
return False
def _normalize_errors(errors: Sequence[Any]) -> List[Dict[str, Any]]:
use_errors: List[Any] = []
for error in errors:
if isinstance(error, ErrorWrapper):
new_errors = ValidationError( # type: ignore[call-arg]
errors=[error], model=RequestErrorModel
).errors()
use_errors.extend(new_errors)
elif isinstance(error, list):
use_errors.extend(_normalize_errors(error))
else:
use_errors.append(error)
return use_errors
def _model_rebuild(model: Type[BaseModel]) -> None:
model.update_forward_refs()
def _model_dump(
model: BaseModel, mode: Literal["json", "python"] = "json", **kwargs: Any
) -> Any:
return model.dict(**kwargs)
def _get_model_config(model: BaseModel) -> Any:
return model.__config__ # type: ignore[attr-defined]
def get_schema_from_model_field(
*,
field: ModelField,
schema_generator: GenerateJsonSchema,
model_name_map: ModelNameMap,
field_mapping: Dict[
Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
],
separate_input_output_schemas: bool = True,
) -> Dict[str, Any]:
# This expects that GenerateJsonSchema was already used to generate the definitions
return field_schema( # type: ignore[no-any-return]
field, model_name_map=model_name_map, ref_prefix=REF_PREFIX
)[0]
def get_compat_model_name_map(fields: List[ModelField]) -> ModelNameMap:
models = get_flat_models_from_fields(fields, known_models=set())
return get_model_name_map(models) # type: ignore[no-any-return]
def get_definitions(
*,
fields: List[ModelField],
schema_generator: GenerateJsonSchema,
model_name_map: ModelNameMap,
separate_input_output_schemas: bool = True,
) -> Tuple[
Dict[
Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
],
Dict[str, Dict[str, Any]],
]:
models = get_flat_models_from_fields(fields, known_models=set())
return {}, get_model_definitions(
flat_models=models, model_name_map=model_name_map
)
def is_scalar_field(field: ModelField) -> bool:
return is_pv1_scalar_field(field)
def is_sequence_field(field: ModelField) -> bool:
return field.shape in sequence_shapes or _annotation_is_sequence(field.type_) # type: ignore[attr-defined]
def is_scalar_sequence_field(field: ModelField) -> bool:
return is_pv1_scalar_sequence_field(field)
def is_bytes_field(field: ModelField) -> bool:
return lenient_issubclass(field.type_, bytes)
def is_bytes_sequence_field(field: ModelField) -> bool:
return field.shape in sequence_shapes and lenient_issubclass(field.type_, bytes) # type: ignore[attr-defined]
def copy_field_info(*, field_info: FieldInfo, annotation: Any) -> FieldInfo:
return copy(field_info)
def serialize_sequence_value(*, field: ModelField, value: Any) -> Sequence[Any]:
return sequence_shape_to_type[field.shape](value) # type: ignore[no-any-return,attr-defined]
def get_missing_field_error(loc: Tuple[str, ...]) -> Dict[str, Any]:
missing_field_error = ErrorWrapper(MissingError(), loc=loc) # type: ignore[call-arg]
new_error = ValidationError([missing_field_error], RequestErrorModel)
return new_error.errors()[0] # type: ignore[return-value]
def create_body_model(
*, fields: Sequence[ModelField], model_name: str
) -> Type[BaseModel]:
BodyModel = create_model(model_name)
for f in fields:
BodyModel.__fields__[f.name] = f # type: ignore[index]
return BodyModel
def get_model_fields(model: Type[BaseModel]) -> List[ModelField]:
return list(model.__fields__.values()) # type: ignore[attr-defined]
def _regenerate_error_with_loc(
*, errors: Sequence[Any], loc_prefix: Tuple[Union[str, int], ...]
) -> List[Dict[str, Any]]:
updated_loc_errors: List[Any] = [
{**err, "loc": loc_prefix + err.get("loc", ())}
for err in _normalize_errors(errors)
]
return updated_loc_errors
def _annotation_is_sequence(annotation: Union[Type[Any], None]) -> bool:
if lenient_issubclass(annotation, (str, bytes)):
return False
return lenient_issubclass(annotation, sequence_types)
def field_annotation_is_sequence(annotation: Union[Type[Any], None]) -> bool:
origin = get_origin(annotation)
if origin is Union or origin is UnionType:
for arg in get_args(annotation):
if field_annotation_is_sequence(arg):
return True
return False
return _annotation_is_sequence(annotation) or _annotation_is_sequence(
get_origin(annotation)
)
def value_is_sequence(value: Any) -> bool:
return isinstance(value, sequence_types) and not isinstance(value, (str, bytes)) # type: ignore[arg-type]
def _annotation_is_complex(annotation: Union[Type[Any], None]) -> bool:
return (
lenient_issubclass(annotation, (BaseModel, Mapping, UploadFile))
or _annotation_is_sequence(annotation)
or is_dataclass(annotation)
)
def field_annotation_is_complex(annotation: Union[Type[Any], None]) -> bool:
origin = get_origin(annotation)
if origin is Union or origin is UnionType:
return any(field_annotation_is_complex(arg) for arg in get_args(annotation))
if origin is Annotated:
return field_annotation_is_complex(get_args(annotation)[0])
return (
_annotation_is_complex(annotation)
or _annotation_is_complex(origin)
or hasattr(origin, "__pydantic_core_schema__")
or hasattr(origin, "__get_pydantic_core_schema__")
)
def field_annotation_is_scalar(annotation: Any) -> bool:
# handle Ellipsis here to make tuple[int, ...] work nicely
return annotation is Ellipsis or not field_annotation_is_complex(annotation)
def field_annotation_is_scalar_sequence(annotation: Union[Type[Any], None]) -> bool:
origin = get_origin(annotation)
if origin is Union or origin is UnionType:
at_least_one_scalar_sequence = False
for arg in get_args(annotation):
if field_annotation_is_scalar_sequence(arg):
at_least_one_scalar_sequence = True
continue
elif not field_annotation_is_scalar(arg):
return False
return at_least_one_scalar_sequence
return field_annotation_is_sequence(annotation) and all(
field_annotation_is_scalar(sub_annotation)
for sub_annotation in get_args(annotation)
)
def is_bytes_or_nonable_bytes_annotation(annotation: Any) -> bool:
if lenient_issubclass(annotation, bytes):
return True
origin = get_origin(annotation)
if origin is Union or origin is UnionType:
for arg in get_args(annotation):
if lenient_issubclass(arg, bytes):
return True
return False
def is_uploadfile_or_nonable_uploadfile_annotation(annotation: Any) -> bool:
if lenient_issubclass(annotation, UploadFile):
return True
origin = get_origin(annotation)
if origin is Union or origin is UnionType:
for arg in get_args(annotation):
if lenient_issubclass(arg, UploadFile):
return True
return False
def is_bytes_sequence_annotation(annotation: Any) -> bool:
origin = get_origin(annotation)
if origin is Union or origin is UnionType:
at_least_one = False
for arg in get_args(annotation):
if is_bytes_sequence_annotation(arg):
at_least_one = True
continue
return at_least_one
return field_annotation_is_sequence(annotation) and all(
is_bytes_or_nonable_bytes_annotation(sub_annotation)
for sub_annotation in get_args(annotation)
)
def is_uploadfile_sequence_annotation(annotation: Any) -> bool:
origin = get_origin(annotation)
if origin is Union or origin is UnionType:
at_least_one = False
for arg in get_args(annotation):
if is_uploadfile_sequence_annotation(arg):
at_least_one = True
continue
return at_least_one
return field_annotation_is_sequence(annotation) and all(
is_uploadfile_or_nonable_uploadfile_annotation(sub_annotation)
for sub_annotation in get_args(annotation)
)
@lru_cache
def get_cached_model_fields(model: Type[BaseModel]) -> List[ModelField]:
return get_model_fields(model)

50
fastapi/_compat/__init__.py

@ -0,0 +1,50 @@
from .main import BaseConfig as BaseConfig
from .main import PydanticSchemaGenerationError as PydanticSchemaGenerationError
from .main import RequiredParam as RequiredParam
from .main import Undefined as Undefined
from .main import UndefinedType as UndefinedType
from .main import Url as Url
from .main import Validator as Validator
from .main import _get_model_config as _get_model_config
from .main import _is_error_wrapper as _is_error_wrapper
from .main import _is_model_class as _is_model_class
from .main import _is_model_field as _is_model_field
from .main import _is_undefined as _is_undefined
from .main import _model_dump as _model_dump
from .main import _model_rebuild as _model_rebuild
from .main import copy_field_info as copy_field_info
from .main import create_body_model as create_body_model
from .main import evaluate_forwardref as evaluate_forwardref
from .main import get_annotation_from_field_info as get_annotation_from_field_info
from .main import get_cached_model_fields as get_cached_model_fields
from .main import get_compat_model_name_map as get_compat_model_name_map
from .main import get_definitions as get_definitions
from .main import get_missing_field_error as get_missing_field_error
from .main import get_schema_from_model_field as get_schema_from_model_field
from .main import is_bytes_field as is_bytes_field
from .main import is_bytes_sequence_field as is_bytes_sequence_field
from .main import is_scalar_field as is_scalar_field
from .main import is_scalar_sequence_field as is_scalar_sequence_field
from .main import is_sequence_field as is_sequence_field
from .main import serialize_sequence_value as serialize_sequence_value
from .main import (
with_info_plain_validator_function as with_info_plain_validator_function,
)
from .model_field import ModelField as ModelField
from .shared import PYDANTIC_V2 as PYDANTIC_V2
from .shared import PYDANTIC_VERSION_MINOR_TUPLE as PYDANTIC_VERSION_MINOR_TUPLE
from .shared import annotation_is_pydantic_v1 as annotation_is_pydantic_v1
from .shared import field_annotation_is_scalar as field_annotation_is_scalar
from .shared import (
is_uploadfile_or_nonable_uploadfile_annotation as is_uploadfile_or_nonable_uploadfile_annotation,
)
from .shared import (
is_uploadfile_sequence_annotation as is_uploadfile_sequence_annotation,
)
from .shared import lenient_issubclass as lenient_issubclass
from .shared import sequence_types as sequence_types
from .shared import value_is_sequence as value_is_sequence
from .v1 import CoreSchema as CoreSchema
from .v1 import GetJsonSchemaHandler as GetJsonSchemaHandler
from .v1 import JsonSchemaValue as JsonSchemaValue
from .v1 import _normalize_errors as _normalize_errors

305
fastapi/_compat/main.py

@ -0,0 +1,305 @@
from functools import lru_cache
from typing import (
Any,
Dict,
List,
Sequence,
Tuple,
Type,
)
from fastapi._compat import v1
from fastapi._compat.shared import PYDANTIC_V2, lenient_issubclass
from fastapi.types import ModelNameMap
from pydantic import BaseModel
from typing_extensions import Literal
from .model_field import ModelField
if PYDANTIC_V2:
from .v2 import BaseConfig as BaseConfig
from .v2 import FieldInfo as FieldInfo
from .v2 import PydanticSchemaGenerationError as PydanticSchemaGenerationError
from .v2 import RequiredParam as RequiredParam
from .v2 import Undefined as Undefined
from .v2 import UndefinedType as UndefinedType
from .v2 import Url as Url
from .v2 import Validator as Validator
from .v2 import evaluate_forwardref as evaluate_forwardref
from .v2 import get_missing_field_error as get_missing_field_error
from .v2 import (
with_info_plain_validator_function as with_info_plain_validator_function,
)
else:
from .v1 import BaseConfig as BaseConfig # type: ignore[assignment]
from .v1 import FieldInfo as FieldInfo
from .v1 import ( # type: ignore[assignment]
PydanticSchemaGenerationError as PydanticSchemaGenerationError,
)
from .v1 import RequiredParam as RequiredParam
from .v1 import Undefined as Undefined
from .v1 import UndefinedType as UndefinedType
from .v1 import Url as Url # type: ignore[assignment]
from .v1 import Validator as Validator
from .v1 import evaluate_forwardref as evaluate_forwardref
from .v1 import get_missing_field_error as get_missing_field_error
from .v1 import ( # type: ignore[assignment]
with_info_plain_validator_function as with_info_plain_validator_function,
)
@lru_cache
def get_cached_model_fields(model: Type[BaseModel]) -> List[ModelField]:
if lenient_issubclass(model, v1.BaseModel):
return v1.get_model_fields(model)
else:
from . import v2
return v2.get_model_fields(model) # type: ignore[return-value]
def _is_undefined(value: object) -> bool:
if isinstance(value, v1.UndefinedType):
return True
elif PYDANTIC_V2:
from . import v2
return isinstance(value, v2.UndefinedType)
return False
def _get_model_config(model: BaseModel) -> Any:
if isinstance(model, v1.BaseModel):
return v1._get_model_config(model)
elif PYDANTIC_V2:
from . import v2
return v2._get_model_config(model)
def _model_dump(
model: BaseModel, mode: Literal["json", "python"] = "json", **kwargs: Any
) -> Any:
if isinstance(model, v1.BaseModel):
return v1._model_dump(model, mode=mode, **kwargs)
elif PYDANTIC_V2:
from . import v2
return v2._model_dump(model, mode=mode, **kwargs)
def _is_error_wrapper(exc: Exception) -> bool:
if isinstance(exc, v1.ErrorWrapper):
return True
elif PYDANTIC_V2:
from . import v2
return isinstance(exc, v2.ErrorWrapper)
return False
def copy_field_info(*, field_info: FieldInfo, annotation: Any) -> FieldInfo:
if isinstance(field_info, v1.FieldInfo):
return v1.copy_field_info(field_info=field_info, annotation=annotation)
else:
assert PYDANTIC_V2
from . import v2
return v2.copy_field_info(field_info=field_info, annotation=annotation)
def create_body_model(
*, fields: Sequence[ModelField], model_name: str
) -> Type[BaseModel]:
if fields and isinstance(fields[0], v1.ModelField):
return v1.create_body_model(fields=fields, model_name=model_name)
else:
assert PYDANTIC_V2
from . import v2
return v2.create_body_model(fields=fields, model_name=model_name) # type: ignore[arg-type]
def get_annotation_from_field_info(
annotation: Any, field_info: FieldInfo, field_name: str
) -> Any:
if isinstance(field_info, v1.FieldInfo):
return v1.get_annotation_from_field_info(
annotation=annotation, field_info=field_info, field_name=field_name
)
else:
assert PYDANTIC_V2
from . import v2
return v2.get_annotation_from_field_info(
annotation=annotation, field_info=field_info, field_name=field_name
)
def is_bytes_field(field: ModelField) -> bool:
if isinstance(field, v1.ModelField):
return v1.is_bytes_field(field)
else:
assert PYDANTIC_V2
from . import v2
return v2.is_bytes_field(field) # type: ignore[arg-type]
def is_bytes_sequence_field(field: ModelField) -> bool:
if isinstance(field, v1.ModelField):
return v1.is_bytes_sequence_field(field)
else:
assert PYDANTIC_V2
from . import v2
return v2.is_bytes_sequence_field(field) # type: ignore[arg-type]
def is_scalar_field(field: ModelField) -> bool:
if isinstance(field, v1.ModelField):
return v1.is_scalar_field(field)
else:
assert PYDANTIC_V2
from . import v2
return v2.is_scalar_field(field) # type: ignore[arg-type]
def is_scalar_sequence_field(field: ModelField) -> bool:
if isinstance(field, v1.ModelField):
return v1.is_scalar_sequence_field(field)
else:
assert PYDANTIC_V2
from . import v2
return v2.is_scalar_sequence_field(field) # type: ignore[arg-type]
def is_sequence_field(field: ModelField) -> bool:
if isinstance(field, v1.ModelField):
return v1.is_sequence_field(field)
else:
assert PYDANTIC_V2
from . import v2
return v2.is_sequence_field(field) # type: ignore[arg-type]
def serialize_sequence_value(*, field: ModelField, value: Any) -> Sequence[Any]:
if isinstance(field, v1.ModelField):
return v1.serialize_sequence_value(field=field, value=value)
else:
assert PYDANTIC_V2
from . import v2
return v2.serialize_sequence_value(field=field, value=value) # type: ignore[arg-type]
def _model_rebuild(model: Type[BaseModel]) -> None:
if lenient_issubclass(model, v1.BaseModel):
v1._model_rebuild(model)
elif PYDANTIC_V2:
from . import v2
v2._model_rebuild(model)
def get_compat_model_name_map(fields: List[ModelField]) -> ModelNameMap:
v1_model_fields = [field for field in fields if isinstance(field, v1.ModelField)]
v1_flat_models = v1.get_flat_models_from_fields(v1_model_fields, known_models=set()) # type: ignore[attr-defined]
all_flat_models = v1_flat_models
if PYDANTIC_V2:
from . import v2
v2_model_fields = [
field for field in fields if isinstance(field, v2.ModelField)
]
v2_flat_models = v2.get_flat_models_from_fields(
v2_model_fields, known_models=set()
)
all_flat_models = all_flat_models.union(v2_flat_models)
model_name_map = v2.get_model_name_map(all_flat_models)
return model_name_map
model_name_map = v1.get_model_name_map(all_flat_models)
return model_name_map
def get_definitions(
*,
fields: List[ModelField],
model_name_map: ModelNameMap,
separate_input_output_schemas: bool = True,
) -> Tuple[
Dict[Tuple[ModelField, Literal["validation", "serialization"]], v1.JsonSchemaValue],
Dict[str, Dict[str, Any]],
]:
v1_fields = [field for field in fields if isinstance(field, v1.ModelField)]
v1_field_maps, v1_definitions = v1.get_definitions(
fields=v1_fields,
model_name_map=model_name_map,
separate_input_output_schemas=separate_input_output_schemas,
)
if not PYDANTIC_V2:
return v1_field_maps, v1_definitions
else:
from . import v2
v2_fields = [field for field in fields if isinstance(field, v2.ModelField)]
v2_field_maps, v2_definitions = v2.get_definitions(
fields=v2_fields,
model_name_map=model_name_map,
separate_input_output_schemas=separate_input_output_schemas,
)
all_definitions = {**v1_definitions, **v2_definitions}
all_field_maps = {**v1_field_maps, **v2_field_maps}
return all_field_maps, all_definitions
def get_schema_from_model_field(
*,
field: ModelField,
model_name_map: ModelNameMap,
field_mapping: Dict[
Tuple[ModelField, Literal["validation", "serialization"]], v1.JsonSchemaValue
],
separate_input_output_schemas: bool = True,
) -> Dict[str, Any]:
if isinstance(field, v1.ModelField):
return v1.get_schema_from_model_field(
field=field,
model_name_map=model_name_map,
field_mapping=field_mapping,
separate_input_output_schemas=separate_input_output_schemas,
)
else:
assert PYDANTIC_V2
from . import v2
return v2.get_schema_from_model_field(
field=field, # type: ignore[arg-type]
model_name_map=model_name_map,
field_mapping=field_mapping, # type: ignore[arg-type]
separate_input_output_schemas=separate_input_output_schemas,
)
def _is_model_field(value: Any) -> bool:
if isinstance(value, v1.ModelField):
return True
elif PYDANTIC_V2:
from . import v2
return isinstance(value, v2.ModelField)
return False
def _is_model_class(value: Any) -> bool:
if lenient_issubclass(value, v1.BaseModel):
return True
elif PYDANTIC_V2:
from . import v2
return lenient_issubclass(value, v2.BaseModel) # type: ignore[attr-defined]
return False

53
fastapi/_compat/model_field.py

@ -0,0 +1,53 @@
from typing import (
Any,
Dict,
List,
Tuple,
Union,
)
from fastapi.types import IncEx
from pydantic.fields import FieldInfo
from typing_extensions import Literal, Protocol
class ModelField(Protocol):
field_info: "FieldInfo"
name: str
mode: Literal["validation", "serialization"] = "validation"
_version: Literal["v1", "v2"] = "v1"
@property
def alias(self) -> str: ...
@property
def required(self) -> bool: ...
@property
def default(self) -> Any: ...
@property
def type_(self) -> Any: ...
def get_default(self) -> Any: ...
def validate(
self,
value: Any,
values: Dict[str, Any] = {}, # noqa: B006
*,
loc: Tuple[Union[int, str], ...] = (),
) -> Tuple[Any, Union[List[Dict[str, Any]], None]]: ...
def serialize(
self,
value: Any,
*,
mode: Literal["json", "python"] = "json",
include: Union[IncEx, None] = None,
exclude: Union[IncEx, None] = None,
by_alias: bool = True,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
) -> Any: ...

209
fastapi/_compat/shared.py

@ -0,0 +1,209 @@
import sys
import types
import typing
from collections import deque
from dataclasses import is_dataclass
from typing import (
Any,
Deque,
FrozenSet,
List,
Mapping,
Sequence,
Set,
Tuple,
Type,
Union,
)
from fastapi._compat import v1
from fastapi.types import UnionType
from pydantic import BaseModel
from pydantic.version import VERSION as PYDANTIC_VERSION
from starlette.datastructures import UploadFile
from typing_extensions import Annotated, get_args, get_origin
# Copy from Pydantic v2, compatible with v1
if sys.version_info < (3, 9):
# Pydantic no longer supports Python 3.8, this might be incorrect, but the code
# this is used for is also never reached in this codebase, as it's a copy of
# Pydantic's lenient_issubclass, just for compatibility with v1
# TODO: remove when dropping support for Python 3.8
WithArgsTypes: Tuple[Any, ...] = ()
elif sys.version_info < (3, 10):
WithArgsTypes: tuple[Any, ...] = (typing._GenericAlias, types.GenericAlias) # type: ignore[attr-defined]
else:
WithArgsTypes: tuple[Any, ...] = (
typing._GenericAlias, # type: ignore[attr-defined]
types.GenericAlias,
types.UnionType,
) # pyright: ignore[reportAttributeAccessIssue]
PYDANTIC_VERSION_MINOR_TUPLE = tuple(int(x) for x in PYDANTIC_VERSION.split(".")[:2])
PYDANTIC_V2 = PYDANTIC_VERSION_MINOR_TUPLE[0] == 2
sequence_annotation_to_type = {
Sequence: list,
List: list,
list: list,
Tuple: tuple,
tuple: tuple,
Set: set,
set: set,
FrozenSet: frozenset,
frozenset: frozenset,
Deque: deque,
deque: deque,
}
sequence_types = tuple(sequence_annotation_to_type.keys())
Url: Type[Any]
# Copy of Pydantic v2, compatible with v1
def lenient_issubclass(
cls: Any, class_or_tuple: Union[Type[Any], Tuple[Type[Any], ...], None]
) -> bool:
try:
return isinstance(cls, type) and issubclass(cls, class_or_tuple) # type: ignore[arg-type]
except TypeError: # pragma: no cover
if isinstance(cls, WithArgsTypes):
return False
raise # pragma: no cover
def _annotation_is_sequence(annotation: Union[Type[Any], None]) -> bool:
if lenient_issubclass(annotation, (str, bytes)):
return False
return lenient_issubclass(annotation, sequence_types) # type: ignore[arg-type]
def field_annotation_is_sequence(annotation: Union[Type[Any], None]) -> bool:
origin = get_origin(annotation)
if origin is Union or origin is UnionType:
for arg in get_args(annotation):
if field_annotation_is_sequence(arg):
return True
return False
return _annotation_is_sequence(annotation) or _annotation_is_sequence(
get_origin(annotation)
)
def value_is_sequence(value: Any) -> bool:
return isinstance(value, sequence_types) and not isinstance(value, (str, bytes)) # type: ignore[arg-type]
def _annotation_is_complex(annotation: Union[Type[Any], None]) -> bool:
return (
lenient_issubclass(annotation, (BaseModel, v1.BaseModel, Mapping, UploadFile))
or _annotation_is_sequence(annotation)
or is_dataclass(annotation)
)
def field_annotation_is_complex(annotation: Union[Type[Any], None]) -> bool:
origin = get_origin(annotation)
if origin is Union or origin is UnionType:
return any(field_annotation_is_complex(arg) for arg in get_args(annotation))
if origin is Annotated:
return field_annotation_is_complex(get_args(annotation)[0])
return (
_annotation_is_complex(annotation)
or _annotation_is_complex(origin)
or hasattr(origin, "__pydantic_core_schema__")
or hasattr(origin, "__get_pydantic_core_schema__")
)
def field_annotation_is_scalar(annotation: Any) -> bool:
# handle Ellipsis here to make tuple[int, ...] work nicely
return annotation is Ellipsis or not field_annotation_is_complex(annotation)
def field_annotation_is_scalar_sequence(annotation: Union[Type[Any], None]) -> bool:
origin = get_origin(annotation)
if origin is Union or origin is UnionType:
at_least_one_scalar_sequence = False
for arg in get_args(annotation):
if field_annotation_is_scalar_sequence(arg):
at_least_one_scalar_sequence = True
continue
elif not field_annotation_is_scalar(arg):
return False
return at_least_one_scalar_sequence
return field_annotation_is_sequence(annotation) and all(
field_annotation_is_scalar(sub_annotation)
for sub_annotation in get_args(annotation)
)
def is_bytes_or_nonable_bytes_annotation(annotation: Any) -> bool:
if lenient_issubclass(annotation, bytes):
return True
origin = get_origin(annotation)
if origin is Union or origin is UnionType:
for arg in get_args(annotation):
if lenient_issubclass(arg, bytes):
return True
return False
def is_uploadfile_or_nonable_uploadfile_annotation(annotation: Any) -> bool:
if lenient_issubclass(annotation, UploadFile):
return True
origin = get_origin(annotation)
if origin is Union or origin is UnionType:
for arg in get_args(annotation):
if lenient_issubclass(arg, UploadFile):
return True
return False
def is_bytes_sequence_annotation(annotation: Any) -> bool:
origin = get_origin(annotation)
if origin is Union or origin is UnionType:
at_least_one = False
for arg in get_args(annotation):
if is_bytes_sequence_annotation(arg):
at_least_one = True
continue
return at_least_one
return field_annotation_is_sequence(annotation) and all(
is_bytes_or_nonable_bytes_annotation(sub_annotation)
for sub_annotation in get_args(annotation)
)
def is_uploadfile_sequence_annotation(annotation: Any) -> bool:
origin = get_origin(annotation)
if origin is Union or origin is UnionType:
at_least_one = False
for arg in get_args(annotation):
if is_uploadfile_sequence_annotation(arg):
at_least_one = True
continue
return at_least_one
return field_annotation_is_sequence(annotation) and all(
is_uploadfile_or_nonable_uploadfile_annotation(sub_annotation)
for sub_annotation in get_args(annotation)
)
def annotation_is_pydantic_v1(annotation: Any) -> bool:
if lenient_issubclass(annotation, v1.BaseModel):
return True
origin = get_origin(annotation)
if origin is Union or origin is UnionType:
for arg in get_args(annotation):
if lenient_issubclass(arg, v1.BaseModel):
return True
if field_annotation_is_sequence(annotation):
for sub_annotation in get_args(annotation):
if annotation_is_pydantic_v1(sub_annotation):
return True
return False

334
fastapi/_compat/v1.py

@ -0,0 +1,334 @@
from copy import copy
from dataclasses import dataclass, is_dataclass
from enum import Enum
from typing import (
Any,
Callable,
Dict,
List,
Sequence,
Set,
Tuple,
Type,
Union,
)
from fastapi._compat import shared
from fastapi.openapi.constants import REF_PREFIX as REF_PREFIX
from fastapi.types import ModelNameMap
from pydantic.version import VERSION as PYDANTIC_VERSION
from typing_extensions import Literal
PYDANTIC_VERSION_MINOR_TUPLE = tuple(int(x) for x in PYDANTIC_VERSION.split(".")[:2])
PYDANTIC_V2 = PYDANTIC_VERSION_MINOR_TUPLE[0] == 2
# Keeping old "Required" functionality from Pydantic V1, without
# shadowing typing.Required.
RequiredParam: Any = Ellipsis
if not PYDANTIC_V2:
from pydantic import BaseConfig as BaseConfig
from pydantic import BaseModel as BaseModel
from pydantic import ValidationError as ValidationError
from pydantic import create_model as create_model
from pydantic.class_validators import Validator as Validator
from pydantic.color import Color as Color
from pydantic.error_wrappers import ErrorWrapper as ErrorWrapper
from pydantic.errors import MissingError
from pydantic.fields import ( # type: ignore[attr-defined]
SHAPE_FROZENSET,
SHAPE_LIST,
SHAPE_SEQUENCE,
SHAPE_SET,
SHAPE_SINGLETON,
SHAPE_TUPLE,
SHAPE_TUPLE_ELLIPSIS,
)
from pydantic.fields import FieldInfo as FieldInfo
from pydantic.fields import ModelField as ModelField # type: ignore[attr-defined]
from pydantic.fields import Undefined as Undefined # type: ignore[attr-defined]
from pydantic.fields import ( # type: ignore[attr-defined]
UndefinedType as UndefinedType,
)
from pydantic.networks import AnyUrl as AnyUrl
from pydantic.networks import NameEmail as NameEmail
from pydantic.schema import TypeModelSet as TypeModelSet
from pydantic.schema import (
field_schema,
get_flat_models_from_fields,
model_process_schema,
)
from pydantic.schema import (
get_annotation_from_field_info as get_annotation_from_field_info,
)
from pydantic.schema import get_flat_models_from_field as get_flat_models_from_field
from pydantic.schema import get_model_name_map as get_model_name_map
from pydantic.types import SecretBytes as SecretBytes
from pydantic.types import SecretStr as SecretStr
from pydantic.typing import evaluate_forwardref as evaluate_forwardref
from pydantic.utils import lenient_issubclass as lenient_issubclass
else:
from pydantic.v1 import BaseConfig as BaseConfig # type: ignore[assignment]
from pydantic.v1 import BaseModel as BaseModel # type: ignore[assignment]
from pydantic.v1 import ( # type: ignore[assignment]
ValidationError as ValidationError,
)
from pydantic.v1 import create_model as create_model # type: ignore[no-redef]
from pydantic.v1.class_validators import Validator as Validator
from pydantic.v1.color import Color as Color # type: ignore[assignment]
from pydantic.v1.error_wrappers import ErrorWrapper as ErrorWrapper
from pydantic.v1.errors import MissingError
from pydantic.v1.fields import (
SHAPE_FROZENSET,
SHAPE_LIST,
SHAPE_SEQUENCE,
SHAPE_SET,
SHAPE_SINGLETON,
SHAPE_TUPLE,
SHAPE_TUPLE_ELLIPSIS,
)
from pydantic.v1.fields import FieldInfo as FieldInfo # type: ignore[assignment]
from pydantic.v1.fields import ModelField as ModelField
from pydantic.v1.fields import Undefined as Undefined
from pydantic.v1.fields import UndefinedType as UndefinedType
from pydantic.v1.networks import AnyUrl as AnyUrl
from pydantic.v1.networks import ( # type: ignore[assignment]
NameEmail as NameEmail,
)
from pydantic.v1.schema import TypeModelSet as TypeModelSet
from pydantic.v1.schema import (
field_schema,
get_flat_models_from_fields,
model_process_schema,
)
from pydantic.v1.schema import (
get_annotation_from_field_info as get_annotation_from_field_info,
)
from pydantic.v1.schema import (
get_flat_models_from_field as get_flat_models_from_field,
)
from pydantic.v1.schema import get_model_name_map as get_model_name_map
from pydantic.v1.types import ( # type: ignore[assignment]
SecretBytes as SecretBytes,
)
from pydantic.v1.types import ( # type: ignore[assignment]
SecretStr as SecretStr,
)
from pydantic.v1.typing import evaluate_forwardref as evaluate_forwardref
from pydantic.v1.utils import lenient_issubclass as lenient_issubclass
GetJsonSchemaHandler = Any
JsonSchemaValue = Dict[str, Any]
CoreSchema = Any
Url = AnyUrl
sequence_shapes = {
SHAPE_LIST,
SHAPE_SET,
SHAPE_FROZENSET,
SHAPE_TUPLE,
SHAPE_SEQUENCE,
SHAPE_TUPLE_ELLIPSIS,
}
sequence_shape_to_type = {
SHAPE_LIST: list,
SHAPE_SET: set,
SHAPE_TUPLE: tuple,
SHAPE_SEQUENCE: list,
SHAPE_TUPLE_ELLIPSIS: list,
}
@dataclass
class GenerateJsonSchema:
ref_template: str
class PydanticSchemaGenerationError(Exception):
pass
RequestErrorModel: Type[BaseModel] = create_model("Request")
def with_info_plain_validator_function(
function: Callable[..., Any],
*,
ref: Union[str, None] = None,
metadata: Any = None,
serialization: Any = None,
) -> Any:
return {}
def get_model_definitions(
*,
flat_models: Set[Union[Type[BaseModel], Type[Enum]]],
model_name_map: Dict[Union[Type[BaseModel], Type[Enum]], str],
) -> Dict[str, Any]:
definitions: Dict[str, Dict[str, Any]] = {}
for model in flat_models:
m_schema, m_definitions, m_nested_models = model_process_schema(
model, model_name_map=model_name_map, ref_prefix=REF_PREFIX
)
definitions.update(m_definitions)
model_name = model_name_map[model]
definitions[model_name] = m_schema
for m_schema in definitions.values():
if "description" in m_schema:
m_schema["description"] = m_schema["description"].split("\f")[0]
return definitions
def is_pv1_scalar_field(field: ModelField) -> bool:
from fastapi import params
field_info = field.field_info
if not (
field.shape == SHAPE_SINGLETON
and not lenient_issubclass(field.type_, BaseModel)
and not lenient_issubclass(field.type_, dict)
and not shared.field_annotation_is_sequence(field.type_)
and not is_dataclass(field.type_)
and not isinstance(field_info, params.Body)
):
return False
if field.sub_fields:
if not all(is_pv1_scalar_field(f) for f in field.sub_fields):
return False
return True
def is_pv1_scalar_sequence_field(field: ModelField) -> bool:
if (field.shape in sequence_shapes) and not lenient_issubclass(
field.type_, BaseModel
):
if field.sub_fields is not None:
for sub_field in field.sub_fields:
if not is_pv1_scalar_field(sub_field):
return False
return True
if shared._annotation_is_sequence(field.type_):
return True
return False
def _normalize_errors(errors: Sequence[Any]) -> List[Dict[str, Any]]:
use_errors: List[Any] = []
for error in errors:
if isinstance(error, ErrorWrapper):
new_errors = ValidationError( # type: ignore[call-arg]
errors=[error], model=RequestErrorModel
).errors()
use_errors.extend(new_errors)
elif isinstance(error, list):
use_errors.extend(_normalize_errors(error))
else:
use_errors.append(error)
return use_errors
def _regenerate_error_with_loc(
*, errors: Sequence[Any], loc_prefix: Tuple[Union[str, int], ...]
) -> List[Dict[str, Any]]:
updated_loc_errors: List[Any] = [
{**err, "loc": loc_prefix + err.get("loc", ())}
for err in _normalize_errors(errors)
]
return updated_loc_errors
def _model_rebuild(model: Type[BaseModel]) -> None:
model.update_forward_refs()
def _model_dump(
model: BaseModel, mode: Literal["json", "python"] = "json", **kwargs: Any
) -> Any:
return model.dict(**kwargs)
def _get_model_config(model: BaseModel) -> Any:
return model.__config__ # type: ignore[attr-defined]
def get_schema_from_model_field(
*,
field: ModelField,
model_name_map: ModelNameMap,
field_mapping: Dict[
Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
],
separate_input_output_schemas: bool = True,
) -> Dict[str, Any]:
return field_schema( # type: ignore[no-any-return]
field, model_name_map=model_name_map, ref_prefix=REF_PREFIX
)[0]
# def get_compat_model_name_map(fields: List[ModelField]) -> ModelNameMap:
# models = get_flat_models_from_fields(fields, known_models=set())
# return get_model_name_map(models) # type: ignore[no-any-return]
def get_definitions(
*,
fields: List[ModelField],
model_name_map: ModelNameMap,
separate_input_output_schemas: bool = True,
) -> Tuple[
Dict[Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue],
Dict[str, Dict[str, Any]],
]:
models = get_flat_models_from_fields(fields, known_models=set())
return {}, get_model_definitions(flat_models=models, model_name_map=model_name_map)
def is_scalar_field(field: ModelField) -> bool:
return is_pv1_scalar_field(field)
def is_sequence_field(field: ModelField) -> bool:
return field.shape in sequence_shapes or shared._annotation_is_sequence(field.type_)
def is_scalar_sequence_field(field: ModelField) -> bool:
return is_pv1_scalar_sequence_field(field)
def is_bytes_field(field: ModelField) -> bool:
return lenient_issubclass(field.type_, bytes) # type: ignore[no-any-return]
def is_bytes_sequence_field(field: ModelField) -> bool:
return field.shape in sequence_shapes and lenient_issubclass(field.type_, bytes)
def copy_field_info(*, field_info: FieldInfo, annotation: Any) -> FieldInfo:
return copy(field_info)
def serialize_sequence_value(*, field: ModelField, value: Any) -> Sequence[Any]:
return sequence_shape_to_type[field.shape](value) # type: ignore[no-any-return]
def get_missing_field_error(loc: Tuple[str, ...]) -> Dict[str, Any]:
missing_field_error = ErrorWrapper(MissingError(), loc=loc)
new_error = ValidationError([missing_field_error], RequestErrorModel)
return new_error.errors()[0] # type: ignore[return-value]
def create_body_model(
*, fields: Sequence[ModelField], model_name: str
) -> Type[BaseModel]:
BodyModel = create_model(model_name)
for f in fields:
BodyModel.__fields__[f.name] = f # type: ignore[index]
return BodyModel
def get_model_fields(model: Type[BaseModel]) -> List[ModelField]:
return list(model.__fields__.values()) # type: ignore[attr-defined]

459
fastapi/_compat/v2.py

@ -0,0 +1,459 @@
import re
import warnings
from copy import copy, deepcopy
from dataclasses import dataclass
from enum import Enum
from typing import (
Any,
Dict,
List,
Sequence,
Set,
Tuple,
Type,
Union,
cast,
)
from fastapi._compat import shared, v1
from fastapi.openapi.constants import REF_TEMPLATE
from fastapi.types import IncEx, ModelNameMap
from pydantic import BaseModel, TypeAdapter, create_model
from pydantic import PydanticSchemaGenerationError as PydanticSchemaGenerationError
from pydantic import PydanticUndefinedAnnotation as PydanticUndefinedAnnotation
from pydantic import ValidationError as ValidationError
from pydantic._internal._schema_generation_shared import ( # type: ignore[attr-defined]
GetJsonSchemaHandler as GetJsonSchemaHandler,
)
from pydantic._internal._typing_extra import eval_type_lenient
from pydantic._internal._utils import lenient_issubclass as lenient_issubclass
from pydantic.fields import FieldInfo as FieldInfo
from pydantic.json_schema import GenerateJsonSchema as GenerateJsonSchema
from pydantic.json_schema import JsonSchemaValue as JsonSchemaValue
from pydantic_core import CoreSchema as CoreSchema
from pydantic_core import PydanticUndefined, PydanticUndefinedType
from pydantic_core import Url as Url
from typing_extensions import Annotated, Literal, get_args, get_origin
try:
from pydantic_core.core_schema import (
with_info_plain_validator_function as with_info_plain_validator_function,
)
except ImportError: # pragma: no cover
from pydantic_core.core_schema import (
general_plain_validator_function as with_info_plain_validator_function, # noqa: F401
)
RequiredParam = PydanticUndefined
Undefined = PydanticUndefined
UndefinedType = PydanticUndefinedType
evaluate_forwardref = eval_type_lenient
Validator = Any
class BaseConfig:
pass
class ErrorWrapper(Exception):
pass
@dataclass
class ModelField:
field_info: FieldInfo
name: str
mode: Literal["validation", "serialization"] = "validation"
@property
def alias(self) -> str:
a = self.field_info.alias
return a if a is not None else self.name
@property
def required(self) -> bool:
return self.field_info.is_required()
@property
def default(self) -> Any:
return self.get_default()
@property
def type_(self) -> Any:
return self.field_info.annotation
def __post_init__(self) -> None:
with warnings.catch_warnings():
# Pydantic >= 2.12.0 warns about field specific metadata that is unused
# (e.g. `TypeAdapter(Annotated[int, Field(alias='b')])`). In some cases, we
# end up building the type adapter from a model field annotation so we
# need to ignore the warning:
if shared.PYDANTIC_VERSION_MINOR_TUPLE >= (2, 12):
from pydantic.warnings import UnsupportedFieldAttributeWarning
warnings.simplefilter(
"ignore", category=UnsupportedFieldAttributeWarning
)
self._type_adapter: TypeAdapter[Any] = TypeAdapter(
Annotated[self.field_info.annotation, self.field_info]
)
def get_default(self) -> Any:
if self.field_info.is_required():
return Undefined
return self.field_info.get_default(call_default_factory=True)
def validate(
self,
value: Any,
values: Dict[str, Any] = {}, # noqa: B006
*,
loc: Tuple[Union[int, str], ...] = (),
) -> Tuple[Any, Union[List[Dict[str, Any]], None]]:
try:
return (
self._type_adapter.validate_python(value, from_attributes=True),
None,
)
except ValidationError as exc:
return None, v1._regenerate_error_with_loc(
errors=exc.errors(include_url=False), loc_prefix=loc
)
def serialize(
self,
value: Any,
*,
mode: Literal["json", "python"] = "json",
include: Union[IncEx, None] = None,
exclude: Union[IncEx, None] = None,
by_alias: bool = True,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
) -> Any:
# What calls this code passes a value that already called
# self._type_adapter.validate_python(value)
return self._type_adapter.dump_python(
value,
mode=mode,
include=include,
exclude=exclude,
by_alias=by_alias,
exclude_unset=exclude_unset,
exclude_defaults=exclude_defaults,
exclude_none=exclude_none,
)
def __hash__(self) -> int:
# Each ModelField is unique for our purposes, to allow making a dict from
# ModelField to its JSON Schema.
return id(self)
def get_annotation_from_field_info(
annotation: Any, field_info: FieldInfo, field_name: str
) -> Any:
return annotation
def _model_rebuild(model: Type[BaseModel]) -> None:
model.model_rebuild()
def _model_dump(
model: BaseModel, mode: Literal["json", "python"] = "json", **kwargs: Any
) -> Any:
return model.model_dump(mode=mode, **kwargs)
def _get_model_config(model: BaseModel) -> Any:
return model.model_config
def get_schema_from_model_field(
*,
field: ModelField,
model_name_map: ModelNameMap,
field_mapping: Dict[
Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
],
separate_input_output_schemas: bool = True,
) -> Dict[str, Any]:
override_mode: Union[Literal["validation"], None] = (
None if separate_input_output_schemas else "validation"
)
# This expects that GenerateJsonSchema was already used to generate the definitions
json_schema = field_mapping[(field, override_mode or field.mode)]
if "$ref" not in json_schema:
# TODO remove when deprecating Pydantic v1
# Ref: https://github.com/pydantic/pydantic/blob/d61792cc42c80b13b23e3ffa74bc37ec7c77f7d1/pydantic/schema.py#L207
json_schema["title"] = field.field_info.title or field.alias.title().replace(
"_", " "
)
return json_schema
def get_definitions(
*,
fields: Sequence[ModelField],
model_name_map: ModelNameMap,
separate_input_output_schemas: bool = True,
) -> Tuple[
Dict[Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue],
Dict[str, Dict[str, Any]],
]:
schema_generator = GenerateJsonSchema(ref_template=REF_TEMPLATE)
override_mode: Union[Literal["validation"], None] = (
None if separate_input_output_schemas else "validation"
)
flat_models = get_flat_models_from_fields(fields, known_models=set())
flat_model_fields = [
ModelField(field_info=FieldInfo(annotation=model), name=model.__name__)
for model in flat_models
]
input_types = {f.type_ for f in fields}
unique_flat_model_fields = {
f for f in flat_model_fields if f.type_ not in input_types
}
inputs = [
(field, override_mode or field.mode, field._type_adapter.core_schema)
for field in list(fields) + list(unique_flat_model_fields)
]
field_mapping, definitions = schema_generator.generate_definitions(inputs=inputs)
for item_def in cast(Dict[str, Dict[str, Any]], definitions).values():
if "description" in item_def:
item_description = cast(str, item_def["description"]).split("\f")[0]
item_def["description"] = item_description
new_mapping, new_definitions = _remap_definitions_and_field_mappings(
model_name_map=model_name_map,
definitions=definitions, # type: ignore[arg-type]
field_mapping=field_mapping,
)
return new_mapping, new_definitions
def _replace_refs(
*,
schema: Dict[str, Any],
old_name_to_new_name_map: Dict[str, str],
) -> Dict[str, Any]:
new_schema = deepcopy(schema)
for key, value in new_schema.items():
if key == "$ref":
ref_name = schema["$ref"].split("/")[-1]
if ref_name in old_name_to_new_name_map:
new_name = old_name_to_new_name_map[ref_name]
new_schema["$ref"] = REF_TEMPLATE.format(model=new_name)
else:
new_schema["$ref"] = schema["$ref"]
continue
if isinstance(value, dict):
new_schema[key] = _replace_refs(
schema=value,
old_name_to_new_name_map=old_name_to_new_name_map,
)
elif isinstance(value, list):
new_value = []
for item in value:
if isinstance(item, dict):
new_item = _replace_refs(
schema=item,
old_name_to_new_name_map=old_name_to_new_name_map,
)
new_value.append(new_item)
else:
new_value.append(item)
new_schema[key] = new_value
return new_schema
def _remap_definitions_and_field_mappings(
*,
model_name_map: ModelNameMap,
definitions: Dict[str, Any],
field_mapping: Dict[
Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
],
) -> Tuple[
Dict[Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue],
Dict[str, Any],
]:
old_name_to_new_name_map = {}
for field_key, schema in field_mapping.items():
model = field_key[0].type_
if model not in model_name_map:
continue
new_name = model_name_map[model]
old_name = schema["$ref"].split("/")[-1]
if old_name in {f"{new_name}-Input", f"{new_name}-Output"}:
continue
old_name_to_new_name_map[old_name] = new_name
new_field_mapping: Dict[
Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
] = {}
for field_key, schema in field_mapping.items():
new_schema = _replace_refs(
schema=schema,
old_name_to_new_name_map=old_name_to_new_name_map,
)
new_field_mapping[field_key] = new_schema
new_definitions = {}
for key, value in definitions.items():
if key in old_name_to_new_name_map:
new_key = old_name_to_new_name_map[key]
else:
new_key = key
new_value = _replace_refs(
schema=value,
old_name_to_new_name_map=old_name_to_new_name_map,
)
new_definitions[new_key] = new_value
return new_field_mapping, new_definitions
def is_scalar_field(field: ModelField) -> bool:
from fastapi import params
return shared.field_annotation_is_scalar(
field.field_info.annotation
) and not isinstance(field.field_info, params.Body)
def is_sequence_field(field: ModelField) -> bool:
return shared.field_annotation_is_sequence(field.field_info.annotation)
def is_scalar_sequence_field(field: ModelField) -> bool:
return shared.field_annotation_is_scalar_sequence(field.field_info.annotation)
def is_bytes_field(field: ModelField) -> bool:
return shared.is_bytes_or_nonable_bytes_annotation(field.type_)
def is_bytes_sequence_field(field: ModelField) -> bool:
return shared.is_bytes_sequence_annotation(field.type_)
def copy_field_info(*, field_info: FieldInfo, annotation: Any) -> FieldInfo:
cls = type(field_info)
merged_field_info = cls.from_annotation(annotation)
new_field_info = copy(field_info)
new_field_info.metadata = merged_field_info.metadata
new_field_info.annotation = merged_field_info.annotation
return new_field_info
def serialize_sequence_value(*, field: ModelField, value: Any) -> Sequence[Any]:
origin_type = get_origin(field.field_info.annotation) or field.field_info.annotation
assert issubclass(origin_type, shared.sequence_types) # type: ignore[arg-type]
return shared.sequence_annotation_to_type[origin_type](value) # type: ignore[no-any-return]
def get_missing_field_error(loc: Tuple[str, ...]) -> Dict[str, Any]:
error = ValidationError.from_exception_data(
"Field required", [{"type": "missing", "loc": loc, "input": {}}]
).errors(include_url=False)[0]
error["input"] = None
return error # type: ignore[return-value]
def create_body_model(
*, fields: Sequence[ModelField], model_name: str
) -> Type[BaseModel]:
field_params = {f.name: (f.field_info.annotation, f.field_info) for f in fields}
BodyModel: Type[BaseModel] = create_model(model_name, **field_params) # type: ignore[call-overload]
return BodyModel
def get_model_fields(model: Type[BaseModel]) -> List[ModelField]:
return [
ModelField(field_info=field_info, name=name)
for name, field_info in model.model_fields.items()
]
# Duplicate of several schema functions from Pydantic v1 to make them compatible with
# Pydantic v2 and allow mixing the models
TypeModelOrEnum = Union[Type["BaseModel"], Type[Enum]]
TypeModelSet = Set[TypeModelOrEnum]
def normalize_name(name: str) -> str:
return re.sub(r"[^a-zA-Z0-9.\-_]", "_", name)
def get_model_name_map(unique_models: TypeModelSet) -> Dict[TypeModelOrEnum, str]:
name_model_map = {}
conflicting_names: Set[str] = set()
for model in unique_models:
model_name = normalize_name(model.__name__)
if model_name in conflicting_names:
model_name = get_long_model_name(model)
name_model_map[model_name] = model
elif model_name in name_model_map:
conflicting_names.add(model_name)
conflicting_model = name_model_map.pop(model_name)
name_model_map[get_long_model_name(conflicting_model)] = conflicting_model
name_model_map[get_long_model_name(model)] = model
else:
name_model_map[model_name] = model
return {v: k for k, v in name_model_map.items()}
def get_flat_models_from_model(
model: Type["BaseModel"], known_models: Union[TypeModelSet, None] = None
) -> TypeModelSet:
known_models = known_models or set()
fields = get_model_fields(model)
get_flat_models_from_fields(fields, known_models=known_models)
return known_models
def get_flat_models_from_annotation(
annotation: Any, known_models: TypeModelSet
) -> TypeModelSet:
origin = get_origin(annotation)
if origin is not None:
for arg in get_args(annotation):
if lenient_issubclass(arg, (BaseModel, Enum)) and arg not in known_models:
known_models.add(arg)
if lenient_issubclass(arg, BaseModel):
get_flat_models_from_model(arg, known_models=known_models)
else:
get_flat_models_from_annotation(arg, known_models=known_models)
return known_models
def get_flat_models_from_field(
field: ModelField, known_models: TypeModelSet
) -> TypeModelSet:
field_type = field.type_
if lenient_issubclass(field_type, BaseModel):
if field_type in known_models:
return known_models
known_models.add(field_type)
get_flat_models_from_model(field_type, known_models=known_models)
elif lenient_issubclass(field_type, Enum):
known_models.add(field_type)
else:
get_flat_models_from_annotation(field_type, known_models=known_models)
return known_models
def get_flat_models_from_fields(
fields: Sequence[ModelField], known_models: TypeModelSet
) -> TypeModelSet:
for field in fields:
get_flat_models_from_field(field, known_models=known_models)
return known_models
def get_long_model_name(model: TypeModelOrEnum) -> str:
return f"{model.__module__}__{model.__qualname__}".replace(".", "__")

13
fastapi/datastructures.py

@ -11,11 +11,9 @@ from typing import (
)
from fastapi._compat import (
PYDANTIC_V2,
CoreSchema,
GetJsonSchemaHandler,
JsonSchemaValue,
with_info_plain_validator_function,
)
from starlette.datastructures import URL as URL # noqa: F401
from starlette.datastructures import Address as Address # noqa: F401
@ -154,11 +152,10 @@ class UploadFile(StarletteUploadFile):
raise ValueError(f"Expected UploadFile, received: {type(__input_value)}")
return cast(UploadFile, __input_value)
if not PYDANTIC_V2:
@classmethod
def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None:
field_schema.update({"type": "string", "format": "binary"})
# TODO: remove when deprecating Pydantic v1
@classmethod
def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None:
field_schema.update({"type": "string", "format": "binary"})
@classmethod
def __get_pydantic_json_schema__(
@ -170,6 +167,8 @@ class UploadFile(StarletteUploadFile):
def __get_pydantic_core_schema__(
cls, source: Type[Any], handler: Callable[[Any], CoreSchema]
) -> CoreSchema:
from ._compat.v2 import with_info_plain_validator_function
return with_info_plain_validator_function(cls._validate)

105
fastapi/dependencies/utils.py

@ -23,11 +23,11 @@ import anyio
from fastapi import params
from fastapi._compat import (
PYDANTIC_V2,
ErrorWrapper,
ModelField,
RequiredParam,
Undefined,
_regenerate_error_with_loc,
_is_error_wrapper,
_is_model_class,
copy_field_info,
create_body_model,
evaluate_forwardref,
@ -45,8 +45,10 @@ from fastapi._compat import (
lenient_issubclass,
sequence_types,
serialize_sequence_value,
v1,
value_is_sequence,
)
from fastapi._compat.shared import annotation_is_pydantic_v1
from fastapi.background import BackgroundTasks
from fastapi.concurrency import (
asynccontextmanager,
@ -74,6 +76,8 @@ from starlette.responses import Response
from starlette.websockets import WebSocket
from typing_extensions import Annotated, get_args, get_origin
from .. import temp_pydantic_v1_params
if sys.version_info >= (3, 13): # pragma: no cover
from inspect import iscoroutinefunction
else: # pragma: no cover
@ -219,7 +223,7 @@ def _get_flat_fields_from_params(fields: List[ModelField]) -> List[ModelField]:
if not fields:
return fields
first_field = fields[0]
if len(fields) == 1 and lenient_issubclass(first_field.type_, BaseModel):
if len(fields) == 1 and _is_model_class(first_field.type_):
fields_to_extract = get_cached_model_fields(first_field.type_)
return fields_to_extract
return fields
@ -315,7 +319,9 @@ def get_dependant(
)
continue
assert param_details.field is not None
if isinstance(param_details.field.field_info, params.Body):
if isinstance(
param_details.field.field_info, (params.Body, temp_pydantic_v1_params.Body)
):
dependant.body_params.append(param_details.field)
else:
add_param_to_fields(field=param_details.field, dependant=dependant)
@ -374,28 +380,38 @@ def analyze_param(
fastapi_annotations = [
arg
for arg in annotated_args[1:]
if isinstance(arg, (FieldInfo, params.Depends))
if isinstance(arg, (FieldInfo, v1.FieldInfo, params.Depends))
]
fastapi_specific_annotations = [
arg
for arg in fastapi_annotations
if isinstance(arg, (params.Param, params.Body, params.Depends))
if isinstance(
arg,
(
params.Param,
temp_pydantic_v1_params.Param,
params.Body,
temp_pydantic_v1_params.Body,
params.Depends,
),
)
]
if fastapi_specific_annotations:
fastapi_annotation: Union[FieldInfo, params.Depends, None] = (
fastapi_annotation: Union[FieldInfo, v1.FieldInfo, params.Depends, None] = (
fastapi_specific_annotations[-1]
)
else:
fastapi_annotation = None
# Set default for Annotated FieldInfo
if isinstance(fastapi_annotation, FieldInfo):
if isinstance(fastapi_annotation, (FieldInfo, v1.FieldInfo)):
# Copy `field_info` because we mutate `field_info.default` below.
field_info = copy_field_info(
field_info=fastapi_annotation, annotation=use_annotation
)
assert (
field_info.default is Undefined or field_info.default is RequiredParam
), (
assert field_info.default in {
Undefined,
v1.Undefined,
} or field_info.default in {RequiredParam, v1.RequiredParam}, (
f"`{field_info.__class__.__name__}` default value cannot be set in"
f" `Annotated` for {param_name!r}. Set the default value with `=` instead."
)
@ -419,14 +435,15 @@ def analyze_param(
)
depends = value
# Get FieldInfo from default value
elif isinstance(value, FieldInfo):
elif isinstance(value, (FieldInfo, v1.FieldInfo)):
assert field_info is None, (
"Cannot specify FastAPI annotations in `Annotated` and default value"
f" together for {param_name!r}"
)
field_info = value
if PYDANTIC_V2:
field_info.annotation = type_annotation
if isinstance(field_info, FieldInfo):
field_info.annotation = type_annotation
# Get Depends from type annotation
if depends is not None and depends.dependency is None:
@ -463,7 +480,14 @@ def analyze_param(
) or is_uploadfile_sequence_annotation(type_annotation):
field_info = params.File(annotation=use_annotation, default=default_value)
elif not field_annotation_is_scalar(annotation=type_annotation):
field_info = params.Body(annotation=use_annotation, default=default_value)
if annotation_is_pydantic_v1(use_annotation):
field_info = temp_pydantic_v1_params.Body(
annotation=use_annotation, default=default_value
)
else:
field_info = params.Body(
annotation=use_annotation, default=default_value
)
else:
field_info = params.Query(annotation=use_annotation, default=default_value)
@ -472,12 +496,14 @@ def analyze_param(
if field_info is not None:
# Handle field_info.in_
if is_path_param:
assert isinstance(field_info, params.Path), (
assert isinstance(
field_info, (params.Path, temp_pydantic_v1_params.Path)
), (
f"Cannot use `{field_info.__class__.__name__}` for path param"
f" {param_name!r}"
)
elif (
isinstance(field_info, params.Param)
isinstance(field_info, (params.Param, temp_pydantic_v1_params.Param))
and getattr(field_info, "in_", None) is None
):
field_info.in_ = params.ParamTypes.query
@ -486,7 +512,7 @@ def analyze_param(
field_info,
param_name,
)
if isinstance(field_info, params.Form):
if isinstance(field_info, (params.Form, temp_pydantic_v1_params.Form)):
ensure_multipart_is_installed()
if not field_info.alias and getattr(field_info, "convert_underscores", None):
alias = param_name.replace("_", "-")
@ -498,19 +524,19 @@ def analyze_param(
type_=use_annotation_from_field_info,
default=field_info.default,
alias=alias,
required=field_info.default in (RequiredParam, Undefined),
required=field_info.default in (RequiredParam, v1.RequiredParam, Undefined),
field_info=field_info,
)
if is_path_param:
assert is_scalar_field(field=field), (
"Path params must be of one of the supported types"
)
elif isinstance(field_info, params.Query):
elif isinstance(field_info, (params.Query, temp_pydantic_v1_params.Query)):
assert (
is_scalar_field(field)
or is_scalar_sequence_field(field)
or (
lenient_issubclass(field.type_, BaseModel)
_is_model_class(field.type_)
# For Pydantic v1
and getattr(field, "shape", 1) == 1
)
@ -712,10 +738,10 @@ def _validate_value_with_model_field(
else:
return deepcopy(field.default), []
v_, errors_ = field.validate(value, values, loc=loc)
if isinstance(errors_, ErrorWrapper):
if _is_error_wrapper(errors_): # type: ignore[arg-type]
return None, [errors_]
elif isinstance(errors_, list):
new_errors = _regenerate_error_with_loc(errors=errors_, loc_prefix=())
new_errors = v1._regenerate_error_with_loc(errors=errors_, loc_prefix=())
return None, new_errors
else:
return v_, []
@ -732,7 +758,7 @@ def _get_multidict_value(
if (
value is None
or (
isinstance(field.field_info, params.Form)
isinstance(field.field_info, (params.Form, temp_pydantic_v1_params.Form))
and isinstance(value, str) # For type checks
and value == ""
)
@ -798,7 +824,7 @@ def request_params_to_args(
if single_not_embedded_field:
field_info = first_field.field_info
assert isinstance(field_info, params.Param), (
assert isinstance(field_info, (params.Param, temp_pydantic_v1_params.Param)), (
"Params must be subclasses of Param"
)
loc: Tuple[str, ...] = (field_info.in_.value,)
@ -810,7 +836,7 @@ def request_params_to_args(
for field in fields:
value = _get_multidict_value(field, received_params)
field_info = field.field_info
assert isinstance(field_info, params.Param), (
assert isinstance(field_info, (params.Param, temp_pydantic_v1_params.Param)), (
"Params must be subclasses of Param"
)
loc = (field_info.in_.value, field.alias)
@ -837,7 +863,7 @@ def is_union_of_base_models(field_type: Any) -> bool:
union_args = get_args(field_type)
for arg in union_args:
if not lenient_issubclass(arg, BaseModel):
if not _is_model_class(arg):
return False
return True
@ -859,8 +885,8 @@ def _should_embed_body_fields(fields: List[ModelField]) -> bool:
# If it's a Form (or File) field, it has to be a BaseModel (or a union of BaseModels) to be top level
# otherwise it has to be embedded, so that the key value pair can be extracted
if (
isinstance(first_field.field_info, params.Form)
and not lenient_issubclass(first_field.type_, BaseModel)
isinstance(first_field.field_info, (params.Form, temp_pydantic_v1_params.Form))
and not _is_model_class(first_field.type_)
and not is_union_of_base_models(first_field.type_)
):
return True
@ -877,14 +903,14 @@ async def _extract_form_body(
value = _get_multidict_value(field, received_body)
field_info = field.field_info
if (
isinstance(field_info, params.File)
isinstance(field_info, (params.File, temp_pydantic_v1_params.File))
and is_bytes_field(field)
and isinstance(value, UploadFile)
):
value = await value.read()
elif (
is_bytes_sequence_field(field)
and isinstance(field_info, params.File)
and isinstance(field_info, (params.File, temp_pydantic_v1_params.File))
and value_is_sequence(value)
):
# For types
@ -925,7 +951,7 @@ async def request_body_to_args(
if (
single_not_embedded_field
and lenient_issubclass(first_field.type_, BaseModel)
and _is_model_class(first_field.type_)
and isinstance(received_body, FormData)
):
fields_to_extract = get_cached_model_fields(first_field.type_)
@ -990,15 +1016,28 @@ def get_body_field(
BodyFieldInfo_kwargs["default"] = None
if any(isinstance(f.field_info, params.File) for f in flat_dependant.body_params):
BodyFieldInfo: Type[params.Body] = params.File
elif any(
isinstance(f.field_info, temp_pydantic_v1_params.File)
for f in flat_dependant.body_params
):
BodyFieldInfo: Type[temp_pydantic_v1_params.Body] = temp_pydantic_v1_params.File # type: ignore[no-redef]
elif any(isinstance(f.field_info, params.Form) for f in flat_dependant.body_params):
BodyFieldInfo = params.Form
elif any(
isinstance(f.field_info, temp_pydantic_v1_params.Form)
for f in flat_dependant.body_params
):
BodyFieldInfo = temp_pydantic_v1_params.Form # type: ignore[assignment]
else:
BodyFieldInfo = params.Body
if annotation_is_pydantic_v1(BodyModel):
BodyFieldInfo = temp_pydantic_v1_params.Body # type: ignore[assignment]
else:
BodyFieldInfo = params.Body
body_param_media_types = [
f.field_info.media_type
for f in flat_dependant.body_params
if isinstance(f.field_info, params.Body)
if isinstance(f.field_info, (params.Body, temp_pydantic_v1_params.Body))
]
if len(set(body_param_media_types)) == 1:
BodyFieldInfo_kwargs["media_type"] = body_param_media_types[0]

15
fastapi/encoders.py

@ -17,6 +17,7 @@ from types import GeneratorType
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
from uuid import UUID
from fastapi._compat import v1
from fastapi.types import IncEx
from pydantic import BaseModel
from pydantic.color import Color
@ -24,7 +25,7 @@ from pydantic.networks import AnyUrl, NameEmail
from pydantic.types import SecretBytes, SecretStr
from typing_extensions import Annotated, Doc
from ._compat import PYDANTIC_V2, UndefinedType, Url, _model_dump
from ._compat import Url, _is_undefined, _model_dump
# Taken from Pydantic v1 as is
@ -58,6 +59,7 @@ def decimal_encoder(dec_value: Decimal) -> Union[int, float]:
ENCODERS_BY_TYPE: Dict[Type[Any], Callable[[Any], Any]] = {
bytes: lambda o: o.decode(),
Color: str,
v1.Color: str,
datetime.date: isoformat,
datetime.datetime: isoformat,
datetime.time: isoformat,
@ -74,14 +76,19 @@ ENCODERS_BY_TYPE: Dict[Type[Any], Callable[[Any], Any]] = {
IPv6Interface: str,
IPv6Network: str,
NameEmail: str,
v1.NameEmail: str,
Path: str,
Pattern: lambda o: o.pattern,
SecretBytes: str,
v1.SecretBytes: str,
SecretStr: str,
v1.SecretStr: str,
set: list,
UUID: str,
Url: str,
v1.Url: str,
AnyUrl: str,
v1.AnyUrl: str,
}
@ -213,10 +220,10 @@ def jsonable_encoder(
include = set(include)
if exclude is not None and not isinstance(exclude, (set, dict)):
exclude = set(exclude)
if isinstance(obj, BaseModel):
if isinstance(obj, (BaseModel, v1.BaseModel)):
# TODO: remove when deprecating Pydantic v1
encoders: Dict[Any, Any] = {}
if not PYDANTIC_V2:
if isinstance(obj, v1.BaseModel):
encoders = getattr(obj.__config__, "json_encoders", {}) # type: ignore[attr-defined]
if custom_encoder:
encoders = {**encoders, **custom_encoder}
@ -260,7 +267,7 @@ def jsonable_encoder(
return str(obj)
if isinstance(obj, (str, int, float, type(None))):
return obj
if isinstance(obj, UndefinedType):
if _is_undefined(obj):
return None
if isinstance(obj, dict):
encoded_dict = {}

23
fastapi/openapi/utils.py

@ -5,7 +5,6 @@ from typing import Any, Dict, List, Optional, Sequence, Set, Tuple, Type, Union,
from fastapi import routing
from fastapi._compat import (
GenerateJsonSchema,
JsonSchemaValue,
ModelField,
Undefined,
@ -22,7 +21,7 @@ from fastapi.dependencies.utils import (
get_flat_params,
)
from fastapi.encoders import jsonable_encoder
from fastapi.openapi.constants import METHODS_WITH_BODY, REF_PREFIX, REF_TEMPLATE
from fastapi.openapi.constants import METHODS_WITH_BODY, REF_PREFIX
from fastapi.openapi.models import OpenAPI
from fastapi.params import Body, ParamTypes
from fastapi.responses import Response
@ -37,6 +36,8 @@ from starlette.responses import JSONResponse
from starlette.routing import BaseRoute
from typing_extensions import Literal
from .._compat import _is_model_field
validation_error_definition = {
"title": "ValidationError",
"type": "object",
@ -94,7 +95,6 @@ def get_openapi_security_definitions(
def _get_openapi_operation_parameters(
*,
dependant: Dependant,
schema_generator: GenerateJsonSchema,
model_name_map: ModelNameMap,
field_mapping: Dict[
Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
@ -128,7 +128,6 @@ def _get_openapi_operation_parameters(
continue
param_schema = get_schema_from_model_field(
field=param,
schema_generator=schema_generator,
model_name_map=model_name_map,
field_mapping=field_mapping,
separate_input_output_schemas=separate_input_output_schemas,
@ -169,7 +168,6 @@ def _get_openapi_operation_parameters(
def get_openapi_operation_request_body(
*,
body_field: Optional[ModelField],
schema_generator: GenerateJsonSchema,
model_name_map: ModelNameMap,
field_mapping: Dict[
Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
@ -178,10 +176,9 @@ def get_openapi_operation_request_body(
) -> Optional[Dict[str, Any]]:
if not body_field:
return None
assert isinstance(body_field, ModelField)
assert _is_model_field(body_field)
body_schema = get_schema_from_model_field(
field=body_field,
schema_generator=schema_generator,
model_name_map=model_name_map,
field_mapping=field_mapping,
separate_input_output_schemas=separate_input_output_schemas,
@ -254,7 +251,6 @@ def get_openapi_path(
*,
route: routing.APIRoute,
operation_ids: Set[str],
schema_generator: GenerateJsonSchema,
model_name_map: ModelNameMap,
field_mapping: Dict[
Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
@ -287,7 +283,6 @@ def get_openapi_path(
security_schemes.update(security_definitions)
operation_parameters = _get_openapi_operation_parameters(
dependant=route.dependant,
schema_generator=schema_generator,
model_name_map=model_name_map,
field_mapping=field_mapping,
separate_input_output_schemas=separate_input_output_schemas,
@ -309,7 +304,6 @@ def get_openapi_path(
if method in METHODS_WITH_BODY:
request_body_oai = get_openapi_operation_request_body(
body_field=route.body_field,
schema_generator=schema_generator,
model_name_map=model_name_map,
field_mapping=field_mapping,
separate_input_output_schemas=separate_input_output_schemas,
@ -327,7 +321,6 @@ def get_openapi_path(
) = get_openapi_path(
route=callback,
operation_ids=operation_ids,
schema_generator=schema_generator,
model_name_map=model_name_map,
field_mapping=field_mapping,
separate_input_output_schemas=separate_input_output_schemas,
@ -358,7 +351,6 @@ def get_openapi_path(
if route.response_field:
response_schema = get_schema_from_model_field(
field=route.response_field,
schema_generator=schema_generator,
model_name_map=model_name_map,
field_mapping=field_mapping,
separate_input_output_schemas=separate_input_output_schemas,
@ -392,7 +384,6 @@ def get_openapi_path(
if field:
additional_field_schema = get_schema_from_model_field(
field=field,
schema_generator=schema_generator,
model_name_map=model_name_map,
field_mapping=field_mapping,
separate_input_output_schemas=separate_input_output_schemas,
@ -454,7 +445,7 @@ def get_fields_from_routes(
route, routing.APIRoute
):
if route.body_field:
assert isinstance(route.body_field, ModelField), (
assert _is_model_field(route.body_field), (
"A request body must be a Pydantic Field"
)
body_fields_from_routes.append(route.body_field)
@ -510,10 +501,8 @@ def get_openapi(
operation_ids: Set[str] = set()
all_fields = get_fields_from_routes(list(routes or []) + list(webhooks or []))
model_name_map = get_compat_model_name_map(all_fields)
schema_generator = GenerateJsonSchema(ref_template=REF_TEMPLATE)
field_mapping, definitions = get_definitions(
fields=all_fields,
schema_generator=schema_generator,
model_name_map=model_name_map,
separate_input_output_schemas=separate_input_output_schemas,
)
@ -522,7 +511,6 @@ def get_openapi(
result = get_openapi_path(
route=route,
operation_ids=operation_ids,
schema_generator=schema_generator,
model_name_map=model_name_map,
field_mapping=field_mapping,
separate_input_output_schemas=separate_input_output_schemas,
@ -542,7 +530,6 @@ def get_openapi(
result = get_openapi_path(
route=webhook,
operation_ids=operation_ids,
schema_generator=schema_generator,
model_name_map=model_name_map,
field_mapping=field_mapping,
separate_input_output_schemas=separate_input_output_schemas,

6
fastapi/routing.py

@ -24,7 +24,7 @@ from typing import (
Union,
)
from fastapi import params
from fastapi import params, temp_pydantic_v1_params
from fastapi._compat import (
ModelField,
Undefined,
@ -307,7 +307,9 @@ def get_request_handler(
) -> Callable[[Request], Coroutine[Any, Any, Response]]:
assert dependant.call is not None, "dependant.call must be a function"
is_coroutine = iscoroutinefunction(dependant.call)
is_body_form = body_field and isinstance(body_field.field_info, params.Form)
is_body_form = body_field and isinstance(
body_field.field_info, (params.Form, temp_pydantic_v1_params.Form)
)
if isinstance(response_class, DefaultPlaceholder):
actual_response_class: Type[Response] = response_class.value
else:

724
fastapi/temp_pydantic_v1_params.py

@ -0,0 +1,724 @@
import warnings
from typing import Any, Callable, Dict, List, Optional, Union
from fastapi.openapi.models import Example
from fastapi.params import ParamTypes
from typing_extensions import Annotated, deprecated
from ._compat.shared import PYDANTIC_VERSION_MINOR_TUPLE
from ._compat.v1 import FieldInfo, Undefined
_Unset: Any = Undefined
class Param(FieldInfo): # type: ignore[misc]
in_: ParamTypes
def __init__(
self,
default: Any = Undefined,
*,
default_factory: Union[Callable[[], Any], None] = _Unset,
annotation: Optional[Any] = None,
alias: Optional[str] = None,
alias_priority: Union[int, None] = _Unset,
# TODO: update when deprecating Pydantic v1, import these types
# validation_alias: str | AliasPath | AliasChoices | None
validation_alias: Union[str, None] = None,
serialization_alias: Union[str, None] = None,
title: Optional[str] = None,
description: Optional[str] = None,
gt: Optional[float] = None,
ge: Optional[float] = None,
lt: Optional[float] = None,
le: Optional[float] = None,
min_length: Optional[int] = None,
max_length: Optional[int] = None,
pattern: Optional[str] = None,
regex: Annotated[
Optional[str],
deprecated(
"Deprecated in FastAPI 0.100.0 and Pydantic v2, use `pattern` instead."
),
] = None,
discriminator: Union[str, None] = None,
strict: Union[bool, None] = _Unset,
multiple_of: Union[float, None] = _Unset,
allow_inf_nan: Union[bool, None] = _Unset,
max_digits: Union[int, None] = _Unset,
decimal_places: Union[int, None] = _Unset,
examples: Optional[List[Any]] = None,
example: Annotated[
Optional[Any],
deprecated(
"Deprecated in OpenAPI 3.1.0 that now uses JSON Schema 2020-12, "
"although still supported. Use examples instead."
),
] = _Unset,
openapi_examples: Optional[Dict[str, Example]] = None,
deprecated: Union[deprecated, str, bool, None] = None,
include_in_schema: bool = True,
json_schema_extra: Union[Dict[str, Any], None] = None,
**extra: Any,
):
if example is not _Unset:
warnings.warn(
"`example` has been deprecated, please use `examples` instead",
category=DeprecationWarning,
stacklevel=4,
)
self.example = example
self.include_in_schema = include_in_schema
self.openapi_examples = openapi_examples
kwargs = dict(
default=default,
default_factory=default_factory,
alias=alias,
title=title,
description=description,
gt=gt,
ge=ge,
lt=lt,
le=le,
min_length=min_length,
max_length=max_length,
discriminator=discriminator,
multiple_of=multiple_of,
allow_inf_nan=allow_inf_nan,
max_digits=max_digits,
decimal_places=decimal_places,
**extra,
)
if examples is not None:
kwargs["examples"] = examples
if regex is not None:
warnings.warn(
"`regex` has been deprecated, please use `pattern` instead",
category=DeprecationWarning,
stacklevel=4,
)
current_json_schema_extra = json_schema_extra or extra
if PYDANTIC_VERSION_MINOR_TUPLE < (2, 7):
self.deprecated = deprecated
else:
kwargs["deprecated"] = deprecated
kwargs["regex"] = pattern or regex
kwargs.update(**current_json_schema_extra)
use_kwargs = {k: v for k, v in kwargs.items() if v is not _Unset}
super().__init__(**use_kwargs)
def __repr__(self) -> str:
return f"{self.__class__.__name__}({self.default})"
class Path(Param): # type: ignore[misc]
in_ = ParamTypes.path
def __init__(
self,
default: Any = ...,
*,
default_factory: Union[Callable[[], Any], None] = _Unset,
annotation: Optional[Any] = None,
alias: Optional[str] = None,
alias_priority: Union[int, None] = _Unset,
# TODO: update when deprecating Pydantic v1, import these types
# validation_alias: str | AliasPath | AliasChoices | None
validation_alias: Union[str, None] = None,
serialization_alias: Union[str, None] = None,
title: Optional[str] = None,
description: Optional[str] = None,
gt: Optional[float] = None,
ge: Optional[float] = None,
lt: Optional[float] = None,
le: Optional[float] = None,
min_length: Optional[int] = None,
max_length: Optional[int] = None,
pattern: Optional[str] = None,
regex: Annotated[
Optional[str],
deprecated(
"Deprecated in FastAPI 0.100.0 and Pydantic v2, use `pattern` instead."
),
] = None,
discriminator: Union[str, None] = None,
strict: Union[bool, None] = _Unset,
multiple_of: Union[float, None] = _Unset,
allow_inf_nan: Union[bool, None] = _Unset,
max_digits: Union[int, None] = _Unset,
decimal_places: Union[int, None] = _Unset,
examples: Optional[List[Any]] = None,
example: Annotated[
Optional[Any],
deprecated(
"Deprecated in OpenAPI 3.1.0 that now uses JSON Schema 2020-12, "
"although still supported. Use examples instead."
),
] = _Unset,
openapi_examples: Optional[Dict[str, Example]] = None,
deprecated: Union[deprecated, str, bool, None] = None,
include_in_schema: bool = True,
json_schema_extra: Union[Dict[str, Any], None] = None,
**extra: Any,
):
assert default is ..., "Path parameters cannot have a default value"
self.in_ = self.in_
super().__init__(
default=default,
default_factory=default_factory,
annotation=annotation,
alias=alias,
alias_priority=alias_priority,
validation_alias=validation_alias,
serialization_alias=serialization_alias,
title=title,
description=description,
gt=gt,
ge=ge,
lt=lt,
le=le,
min_length=min_length,
max_length=max_length,
pattern=pattern,
regex=regex,
discriminator=discriminator,
strict=strict,
multiple_of=multiple_of,
allow_inf_nan=allow_inf_nan,
max_digits=max_digits,
decimal_places=decimal_places,
deprecated=deprecated,
example=example,
examples=examples,
openapi_examples=openapi_examples,
include_in_schema=include_in_schema,
json_schema_extra=json_schema_extra,
**extra,
)
class Query(Param): # type: ignore[misc]
in_ = ParamTypes.query
def __init__(
self,
default: Any = Undefined,
*,
default_factory: Union[Callable[[], Any], None] = _Unset,
annotation: Optional[Any] = None,
alias: Optional[str] = None,
alias_priority: Union[int, None] = _Unset,
# TODO: update when deprecating Pydantic v1, import these types
# validation_alias: str | AliasPath | AliasChoices | None
validation_alias: Union[str, None] = None,
serialization_alias: Union[str, None] = None,
title: Optional[str] = None,
description: Optional[str] = None,
gt: Optional[float] = None,
ge: Optional[float] = None,
lt: Optional[float] = None,
le: Optional[float] = None,
min_length: Optional[int] = None,
max_length: Optional[int] = None,
pattern: Optional[str] = None,
regex: Annotated[
Optional[str],
deprecated(
"Deprecated in FastAPI 0.100.0 and Pydantic v2, use `pattern` instead."
),
] = None,
discriminator: Union[str, None] = None,
strict: Union[bool, None] = _Unset,
multiple_of: Union[float, None] = _Unset,
allow_inf_nan: Union[bool, None] = _Unset,
max_digits: Union[int, None] = _Unset,
decimal_places: Union[int, None] = _Unset,
examples: Optional[List[Any]] = None,
example: Annotated[
Optional[Any],
deprecated(
"Deprecated in OpenAPI 3.1.0 that now uses JSON Schema 2020-12, "
"although still supported. Use examples instead."
),
] = _Unset,
openapi_examples: Optional[Dict[str, Example]] = None,
deprecated: Union[deprecated, str, bool, None] = None,
include_in_schema: bool = True,
json_schema_extra: Union[Dict[str, Any], None] = None,
**extra: Any,
):
super().__init__(
default=default,
default_factory=default_factory,
annotation=annotation,
alias=alias,
alias_priority=alias_priority,
validation_alias=validation_alias,
serialization_alias=serialization_alias,
title=title,
description=description,
gt=gt,
ge=ge,
lt=lt,
le=le,
min_length=min_length,
max_length=max_length,
pattern=pattern,
regex=regex,
discriminator=discriminator,
strict=strict,
multiple_of=multiple_of,
allow_inf_nan=allow_inf_nan,
max_digits=max_digits,
decimal_places=decimal_places,
deprecated=deprecated,
example=example,
examples=examples,
openapi_examples=openapi_examples,
include_in_schema=include_in_schema,
json_schema_extra=json_schema_extra,
**extra,
)
class Header(Param): # type: ignore[misc]
in_ = ParamTypes.header
def __init__(
self,
default: Any = Undefined,
*,
default_factory: Union[Callable[[], Any], None] = _Unset,
annotation: Optional[Any] = None,
alias: Optional[str] = None,
alias_priority: Union[int, None] = _Unset,
# TODO: update when deprecating Pydantic v1, import these types
# validation_alias: str | AliasPath | AliasChoices | None
validation_alias: Union[str, None] = None,
serialization_alias: Union[str, None] = None,
convert_underscores: bool = True,
title: Optional[str] = None,
description: Optional[str] = None,
gt: Optional[float] = None,
ge: Optional[float] = None,
lt: Optional[float] = None,
le: Optional[float] = None,
min_length: Optional[int] = None,
max_length: Optional[int] = None,
pattern: Optional[str] = None,
regex: Annotated[
Optional[str],
deprecated(
"Deprecated in FastAPI 0.100.0 and Pydantic v2, use `pattern` instead."
),
] = None,
discriminator: Union[str, None] = None,
strict: Union[bool, None] = _Unset,
multiple_of: Union[float, None] = _Unset,
allow_inf_nan: Union[bool, None] = _Unset,
max_digits: Union[int, None] = _Unset,
decimal_places: Union[int, None] = _Unset,
examples: Optional[List[Any]] = None,
example: Annotated[
Optional[Any],
deprecated(
"Deprecated in OpenAPI 3.1.0 that now uses JSON Schema 2020-12, "
"although still supported. Use examples instead."
),
] = _Unset,
openapi_examples: Optional[Dict[str, Example]] = None,
deprecated: Union[deprecated, str, bool, None] = None,
include_in_schema: bool = True,
json_schema_extra: Union[Dict[str, Any], None] = None,
**extra: Any,
):
self.convert_underscores = convert_underscores
super().__init__(
default=default,
default_factory=default_factory,
annotation=annotation,
alias=alias,
alias_priority=alias_priority,
validation_alias=validation_alias,
serialization_alias=serialization_alias,
title=title,
description=description,
gt=gt,
ge=ge,
lt=lt,
le=le,
min_length=min_length,
max_length=max_length,
pattern=pattern,
regex=regex,
discriminator=discriminator,
strict=strict,
multiple_of=multiple_of,
allow_inf_nan=allow_inf_nan,
max_digits=max_digits,
decimal_places=decimal_places,
deprecated=deprecated,
example=example,
examples=examples,
openapi_examples=openapi_examples,
include_in_schema=include_in_schema,
json_schema_extra=json_schema_extra,
**extra,
)
class Cookie(Param): # type: ignore[misc]
in_ = ParamTypes.cookie
def __init__(
self,
default: Any = Undefined,
*,
default_factory: Union[Callable[[], Any], None] = _Unset,
annotation: Optional[Any] = None,
alias: Optional[str] = None,
alias_priority: Union[int, None] = _Unset,
# TODO: update when deprecating Pydantic v1, import these types
# validation_alias: str | AliasPath | AliasChoices | None
validation_alias: Union[str, None] = None,
serialization_alias: Union[str, None] = None,
title: Optional[str] = None,
description: Optional[str] = None,
gt: Optional[float] = None,
ge: Optional[float] = None,
lt: Optional[float] = None,
le: Optional[float] = None,
min_length: Optional[int] = None,
max_length: Optional[int] = None,
pattern: Optional[str] = None,
regex: Annotated[
Optional[str],
deprecated(
"Deprecated in FastAPI 0.100.0 and Pydantic v2, use `pattern` instead."
),
] = None,
discriminator: Union[str, None] = None,
strict: Union[bool, None] = _Unset,
multiple_of: Union[float, None] = _Unset,
allow_inf_nan: Union[bool, None] = _Unset,
max_digits: Union[int, None] = _Unset,
decimal_places: Union[int, None] = _Unset,
examples: Optional[List[Any]] = None,
example: Annotated[
Optional[Any],
deprecated(
"Deprecated in OpenAPI 3.1.0 that now uses JSON Schema 2020-12, "
"although still supported. Use examples instead."
),
] = _Unset,
openapi_examples: Optional[Dict[str, Example]] = None,
deprecated: Union[deprecated, str, bool, None] = None,
include_in_schema: bool = True,
json_schema_extra: Union[Dict[str, Any], None] = None,
**extra: Any,
):
super().__init__(
default=default,
default_factory=default_factory,
annotation=annotation,
alias=alias,
alias_priority=alias_priority,
validation_alias=validation_alias,
serialization_alias=serialization_alias,
title=title,
description=description,
gt=gt,
ge=ge,
lt=lt,
le=le,
min_length=min_length,
max_length=max_length,
pattern=pattern,
regex=regex,
discriminator=discriminator,
strict=strict,
multiple_of=multiple_of,
allow_inf_nan=allow_inf_nan,
max_digits=max_digits,
decimal_places=decimal_places,
deprecated=deprecated,
example=example,
examples=examples,
openapi_examples=openapi_examples,
include_in_schema=include_in_schema,
json_schema_extra=json_schema_extra,
**extra,
)
class Body(FieldInfo): # type: ignore[misc]
def __init__(
self,
default: Any = Undefined,
*,
default_factory: Union[Callable[[], Any], None] = _Unset,
annotation: Optional[Any] = None,
embed: Union[bool, None] = None,
media_type: str = "application/json",
alias: Optional[str] = None,
alias_priority: Union[int, None] = _Unset,
# TODO: update when deprecating Pydantic v1, import these types
# validation_alias: str | AliasPath | AliasChoices | None
validation_alias: Union[str, None] = None,
serialization_alias: Union[str, None] = None,
title: Optional[str] = None,
description: Optional[str] = None,
gt: Optional[float] = None,
ge: Optional[float] = None,
lt: Optional[float] = None,
le: Optional[float] = None,
min_length: Optional[int] = None,
max_length: Optional[int] = None,
pattern: Optional[str] = None,
regex: Annotated[
Optional[str],
deprecated(
"Deprecated in FastAPI 0.100.0 and Pydantic v2, use `pattern` instead."
),
] = None,
discriminator: Union[str, None] = None,
strict: Union[bool, None] = _Unset,
multiple_of: Union[float, None] = _Unset,
allow_inf_nan: Union[bool, None] = _Unset,
max_digits: Union[int, None] = _Unset,
decimal_places: Union[int, None] = _Unset,
examples: Optional[List[Any]] = None,
example: Annotated[
Optional[Any],
deprecated(
"Deprecated in OpenAPI 3.1.0 that now uses JSON Schema 2020-12, "
"although still supported. Use examples instead."
),
] = _Unset,
openapi_examples: Optional[Dict[str, Example]] = None,
deprecated: Union[deprecated, str, bool, None] = None,
include_in_schema: bool = True,
json_schema_extra: Union[Dict[str, Any], None] = None,
**extra: Any,
):
self.embed = embed
self.media_type = media_type
if example is not _Unset:
warnings.warn(
"`example` has been deprecated, please use `examples` instead",
category=DeprecationWarning,
stacklevel=4,
)
self.example = example
self.include_in_schema = include_in_schema
self.openapi_examples = openapi_examples
kwargs = dict(
default=default,
default_factory=default_factory,
alias=alias,
title=title,
description=description,
gt=gt,
ge=ge,
lt=lt,
le=le,
min_length=min_length,
max_length=max_length,
discriminator=discriminator,
multiple_of=multiple_of,
allow_inf_nan=allow_inf_nan,
max_digits=max_digits,
decimal_places=decimal_places,
**extra,
)
if examples is not None:
kwargs["examples"] = examples
if regex is not None:
warnings.warn(
"`regex` has been deprecated, please use `pattern` instead",
category=DeprecationWarning,
stacklevel=4,
)
current_json_schema_extra = json_schema_extra or extra
if PYDANTIC_VERSION_MINOR_TUPLE < (2, 7):
self.deprecated = deprecated
else:
kwargs["deprecated"] = deprecated
kwargs["regex"] = pattern or regex
kwargs.update(**current_json_schema_extra)
use_kwargs = {k: v for k, v in kwargs.items() if v is not _Unset}
super().__init__(**use_kwargs)
def __repr__(self) -> str:
return f"{self.__class__.__name__}({self.default})"
class Form(Body): # type: ignore[misc]
def __init__(
self,
default: Any = Undefined,
*,
default_factory: Union[Callable[[], Any], None] = _Unset,
annotation: Optional[Any] = None,
media_type: str = "application/x-www-form-urlencoded",
alias: Optional[str] = None,
alias_priority: Union[int, None] = _Unset,
# TODO: update when deprecating Pydantic v1, import these types
# validation_alias: str | AliasPath | AliasChoices | None
validation_alias: Union[str, None] = None,
serialization_alias: Union[str, None] = None,
title: Optional[str] = None,
description: Optional[str] = None,
gt: Optional[float] = None,
ge: Optional[float] = None,
lt: Optional[float] = None,
le: Optional[float] = None,
min_length: Optional[int] = None,
max_length: Optional[int] = None,
pattern: Optional[str] = None,
regex: Annotated[
Optional[str],
deprecated(
"Deprecated in FastAPI 0.100.0 and Pydantic v2, use `pattern` instead."
),
] = None,
discriminator: Union[str, None] = None,
strict: Union[bool, None] = _Unset,
multiple_of: Union[float, None] = _Unset,
allow_inf_nan: Union[bool, None] = _Unset,
max_digits: Union[int, None] = _Unset,
decimal_places: Union[int, None] = _Unset,
examples: Optional[List[Any]] = None,
example: Annotated[
Optional[Any],
deprecated(
"Deprecated in OpenAPI 3.1.0 that now uses JSON Schema 2020-12, "
"although still supported. Use examples instead."
),
] = _Unset,
openapi_examples: Optional[Dict[str, Example]] = None,
deprecated: Union[deprecated, str, bool, None] = None,
include_in_schema: bool = True,
json_schema_extra: Union[Dict[str, Any], None] = None,
**extra: Any,
):
super().__init__(
default=default,
default_factory=default_factory,
annotation=annotation,
media_type=media_type,
alias=alias,
alias_priority=alias_priority,
validation_alias=validation_alias,
serialization_alias=serialization_alias,
title=title,
description=description,
gt=gt,
ge=ge,
lt=lt,
le=le,
min_length=min_length,
max_length=max_length,
pattern=pattern,
regex=regex,
discriminator=discriminator,
strict=strict,
multiple_of=multiple_of,
allow_inf_nan=allow_inf_nan,
max_digits=max_digits,
decimal_places=decimal_places,
deprecated=deprecated,
example=example,
examples=examples,
openapi_examples=openapi_examples,
include_in_schema=include_in_schema,
json_schema_extra=json_schema_extra,
**extra,
)
class File(Form): # type: ignore[misc]
def __init__(
self,
default: Any = Undefined,
*,
default_factory: Union[Callable[[], Any], None] = _Unset,
annotation: Optional[Any] = None,
media_type: str = "multipart/form-data",
alias: Optional[str] = None,
alias_priority: Union[int, None] = _Unset,
# TODO: update when deprecating Pydantic v1, import these types
# validation_alias: str | AliasPath | AliasChoices | None
validation_alias: Union[str, None] = None,
serialization_alias: Union[str, None] = None,
title: Optional[str] = None,
description: Optional[str] = None,
gt: Optional[float] = None,
ge: Optional[float] = None,
lt: Optional[float] = None,
le: Optional[float] = None,
min_length: Optional[int] = None,
max_length: Optional[int] = None,
pattern: Optional[str] = None,
regex: Annotated[
Optional[str],
deprecated(
"Deprecated in FastAPI 0.100.0 and Pydantic v2, use `pattern` instead."
),
] = None,
discriminator: Union[str, None] = None,
strict: Union[bool, None] = _Unset,
multiple_of: Union[float, None] = _Unset,
allow_inf_nan: Union[bool, None] = _Unset,
max_digits: Union[int, None] = _Unset,
decimal_places: Union[int, None] = _Unset,
examples: Optional[List[Any]] = None,
example: Annotated[
Optional[Any],
deprecated(
"Deprecated in OpenAPI 3.1.0 that now uses JSON Schema 2020-12, "
"although still supported. Use examples instead."
),
] = _Unset,
openapi_examples: Optional[Dict[str, Example]] = None,
deprecated: Union[deprecated, str, bool, None] = None,
include_in_schema: bool = True,
json_schema_extra: Union[Dict[str, Any], None] = None,
**extra: Any,
):
super().__init__(
default=default,
default_factory=default_factory,
annotation=annotation,
media_type=media_type,
alias=alias,
alias_priority=alias_priority,
validation_alias=validation_alias,
serialization_alias=serialization_alias,
title=title,
description=description,
gt=gt,
ge=ge,
lt=lt,
le=le,
min_length=min_length,
max_length=max_length,
pattern=pattern,
regex=regex,
discriminator=discriminator,
strict=strict,
multiple_of=multiple_of,
allow_inf_nan=allow_inf_nan,
max_digits=max_digits,
decimal_places=decimal_places,
deprecated=deprecated,
example=example,
examples=examples,
openapi_examples=openapi_examples,
include_in_schema=include_in_schema,
json_schema_extra=json_schema_extra,
**extra,
)

98
fastapi/utils.py

@ -23,10 +23,12 @@ from fastapi._compat import (
Undefined,
UndefinedType,
Validator,
annotation_is_pydantic_v1,
lenient_issubclass,
v1,
)
from fastapi.datastructures import DefaultPlaceholder, DefaultType
from pydantic import BaseModel, create_model
from pydantic import BaseModel
from pydantic.fields import FieldInfo
from typing_extensions import Literal
@ -60,50 +62,70 @@ def get_path_param_names(path: str) -> Set[str]:
return set(re.findall("{(.*?)}", path))
_invalid_args_message = (
"Invalid args for response field! Hint: "
"check that {type_} is a valid Pydantic field type. "
"If you are using a return type annotation that is not a valid Pydantic "
"field (e.g. Union[Response, dict, None]) you can disable generating the "
"response model from the type annotation with the path operation decorator "
"parameter response_model=None. Read more: "
"https://fastapi.tiangolo.com/tutorial/response-model/"
)
def create_model_field(
name: str,
type_: Any,
class_validators: Optional[Dict[str, Validator]] = None,
default: Optional[Any] = Undefined,
required: Union[bool, UndefinedType] = Undefined,
model_config: Type[BaseConfig] = BaseConfig,
model_config: Union[Type[BaseConfig], None] = None,
field_info: Optional[FieldInfo] = None,
alias: Optional[str] = None,
mode: Literal["validation", "serialization"] = "validation",
version: Literal["1", "auto"] = "auto",
) -> ModelField:
class_validators = class_validators or {}
if PYDANTIC_V2:
v1_model_config = v1.BaseConfig
v1_field_info = field_info or v1.FieldInfo()
v1_kwargs = {
"name": name,
"field_info": v1_field_info,
"type_": type_,
"class_validators": class_validators,
"default": default,
"required": required,
"model_config": v1_model_config,
"alias": alias,
}
if (
annotation_is_pydantic_v1(type_)
or isinstance(field_info, v1.FieldInfo)
or version == "1"
):
try:
return v1.ModelField(**v1_kwargs) # type: ignore[no-any-return]
except RuntimeError:
raise fastapi.exceptions.FastAPIError(_invalid_args_message) from None
elif PYDANTIC_V2:
from ._compat import v2
field_info = field_info or FieldInfo(
annotation=type_, default=default, alias=alias
)
else:
field_info = field_info or FieldInfo()
kwargs = {"name": name, "field_info": field_info}
if PYDANTIC_V2:
kwargs.update({"mode": mode})
else:
kwargs.update(
{
"type_": type_,
"class_validators": class_validators,
"default": default,
"required": required,
"model_config": model_config,
"alias": alias,
}
)
kwargs = {"mode": mode, "name": name, "field_info": field_info}
try:
return v2.ModelField(**kwargs) # type: ignore[return-value,arg-type]
except PydanticSchemaGenerationError:
raise fastapi.exceptions.FastAPIError(_invalid_args_message) from None
# Pydantic v2 is not installed, but it's not a Pydantic v1 ModelField, it could be
# a Pydantic v1 type, like a constrained int
try:
return ModelField(**kwargs) # type: ignore[arg-type]
except (RuntimeError, PydanticSchemaGenerationError):
raise fastapi.exceptions.FastAPIError(
"Invalid args for response field! Hint: "
f"check that {type_} is a valid Pydantic field type. "
"If you are using a return type annotation that is not a valid Pydantic "
"field (e.g. Union[Response, dict, None]) you can disable generating the "
"response model from the type annotation with the path operation decorator "
"parameter response_model=None. Read more: "
"https://fastapi.tiangolo.com/tutorial/response-model/"
) from None
return v1.ModelField(**v1_kwargs) # type: ignore[no-any-return]
except RuntimeError:
raise fastapi.exceptions.FastAPIError(_invalid_args_message) from None
def create_cloned_field(
@ -112,7 +134,10 @@ def create_cloned_field(
cloned_types: Optional[MutableMapping[Type[BaseModel], Type[BaseModel]]] = None,
) -> ModelField:
if PYDANTIC_V2:
return field
from ._compat import v2
if isinstance(field, v2.ModelField):
return field
# cloned_types caches already cloned types to support recursive models and improve
# performance by avoiding unnecessary cloning
if cloned_types is None:
@ -122,17 +147,18 @@ def create_cloned_field(
if is_dataclass(original_type) and hasattr(original_type, "__pydantic_model__"):
original_type = original_type.__pydantic_model__
use_type = original_type
if lenient_issubclass(original_type, BaseModel):
original_type = cast(Type[BaseModel], original_type)
if lenient_issubclass(original_type, v1.BaseModel):
original_type = cast(Type[v1.BaseModel], original_type)
use_type = cloned_types.get(original_type)
if use_type is None:
use_type = create_model(original_type.__name__, __base__=original_type)
use_type = v1.create_model(original_type.__name__, __base__=original_type)
cloned_types[original_type] = use_type
for f in original_type.__fields__.values():
use_type.__fields__[f.name] = create_cloned_field(
f, cloned_types=cloned_types
f,
cloned_types=cloned_types,
)
new_field = create_model_field(name=field.name, type_=use_type)
new_field = create_model_field(name=field.name, type_=use_type, version="1")
new_field.has_alias = field.has_alias # type: ignore[attr-defined]
new_field.alias = field.alias # type: ignore[misc]
new_field.class_validators = field.class_validators # type: ignore[attr-defined]

53
tests/test_compat.py

@ -2,53 +2,45 @@ from typing import Any, Dict, List, Union
from fastapi import FastAPI, UploadFile
from fastapi._compat import (
ModelField,
Undefined,
_get_model_config,
get_cached_model_fields,
get_model_fields,
is_bytes_sequence_annotation,
is_scalar_field,
is_uploadfile_sequence_annotation,
v1,
)
from fastapi._compat.shared import is_bytes_sequence_annotation
from fastapi.testclient import TestClient
from pydantic import BaseConfig, BaseModel, ConfigDict
from pydantic import BaseModel, ConfigDict
from pydantic.fields import FieldInfo
from .utils import needs_pydanticv1, needs_pydanticv2
from .utils import needs_py_lt_314, needs_pydanticv2
@needs_pydanticv2
def test_model_field_default_required():
from fastapi._compat import v2
# For coverage
field_info = FieldInfo(annotation=str)
field = ModelField(name="foo", field_info=field_info)
field = v2.ModelField(name="foo", field_info=field_info)
assert field.default is Undefined
@needs_pydanticv1
def test_upload_file_dummy_with_info_plain_validator_function():
def test_v1_plain_validator_function():
# For coverage
assert UploadFile.__get_pydantic_core_schema__(str, lambda x: None) == {}
def func(v): # pragma: no cover
return v
result = v1.with_info_plain_validator_function(func)
assert result == {}
@needs_pydanticv1
def test_union_scalar_list():
def test_is_model_field():
# For coverage
# TODO: there might not be a current valid code path that uses this, it would
# potentially enable query parameters defined as both a scalar and a list
# but that would require more refactors, also not sure it's really useful
from fastapi._compat import is_pv1_scalar_field
field_info = FieldInfo()
field = ModelField(
name="foo",
field_info=field_info,
type_=Union[str, List[int]],
class_validators={},
model_config=BaseConfig,
)
assert not is_pv1_scalar_field(field)
from fastapi._compat import _is_model_field
assert not _is_model_field(str)
@needs_pydanticv2
@ -141,21 +133,22 @@ def test_is_uploadfile_sequence_annotation():
assert is_uploadfile_sequence_annotation(Union[List[str], List[UploadFile]])
@needs_py_lt_314
def test_is_pv1_scalar_field():
# For coverage
class Model(BaseModel):
class Model(v1.BaseModel):
foo: Union[str, Dict[str, Any]]
fields = get_model_fields(Model)
fields = v1.get_model_fields(Model)
assert not is_scalar_field(fields[0])
def test_get_model_fields_cached():
class Model(BaseModel):
class Model(v1.BaseModel):
foo: str
non_cached_fields = get_model_fields(Model)
non_cached_fields2 = get_model_fields(Model)
non_cached_fields = v1.get_model_fields(Model)
non_cached_fields2 = v1.get_model_fields(Model)
cached_fields = get_cached_model_fields(Model)
cached_fields2 = get_cached_model_fields(Model)
for f1, f2 in zip(cached_fields, cached_fields2):

1122
tests/test_compat_params_v1.py

File diff suppressed because it is too large

7
tests/test_get_model_definitions_formfeed_escape.py

@ -5,6 +5,7 @@ import fastapi.openapi.utils
import pydantic.schema
import pytest
from fastapi import FastAPI
from fastapi._compat import v1
from pydantic import BaseModel
from starlette.testclient import TestClient
@ -166,14 +167,12 @@ def test_model_description_escaped_with_formfeed(sort_reversed: bool):
"""
all_fields = fastapi.openapi.utils.get_fields_from_routes(app.routes)
flat_models = fastapi._compat.get_flat_models_from_fields(
all_fields, known_models=set()
)
flat_models = v1.get_flat_models_from_fields(all_fields, known_models=set())
model_name_map = pydantic.schema.get_model_name_map(flat_models)
expected_address_description = "This is a public description of an Address\n"
models = fastapi._compat.get_model_definitions(
models = v1.get_model_definitions(
flat_models=SortedTypeSet(flat_models, sort_reversed=sort_reversed),
model_name_map=model_name_map,
)

353
tests/test_openapi_separate_input_output_schemas.py

@ -2,6 +2,7 @@ from typing import List, Optional
from fastapi import FastAPI
from fastapi.testclient import TestClient
from inline_snapshot import snapshot
from pydantic import BaseModel
from .utils import PYDANTIC_V2, needs_pydanticv2
@ -135,217 +136,223 @@ def test_openapi_schema():
client = get_app_client()
response = client.get("/openapi.json")
assert response.status_code == 200, response.text
assert response.json() == {
"openapi": "3.1.0",
"info": {"title": "FastAPI", "version": "0.1.0"},
"paths": {
"/items/": {
"get": {
"summary": "Read Items",
"operationId": "read_items_items__get",
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"items": {
"$ref": "#/components/schemas/Item-Output"
},
"type": "array",
"title": "Response Read Items Items Get",
assert response.json() == snapshot(
{
"openapi": "3.1.0",
"info": {"title": "FastAPI", "version": "0.1.0"},
"paths": {
"/items/": {
"get": {
"summary": "Read Items",
"operationId": "read_items_items__get",
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"items": {
"$ref": "#/components/schemas/Item-Output"
},
"type": "array",
"title": "Response Read Items Items Get",
}
}
}
},
}
},
},
"post": {
"summary": "Create Item",
"operationId": "create_item_items__post",
"requestBody": {
"content": {
"application/json": {
"schema": {"$ref": "#/components/schemas/Item-Input"}
},
}
},
"required": True,
},
"responses": {
"200": {
"description": "Successful Response",
"post": {
"summary": "Create Item",
"operationId": "create_item_items__post",
"requestBody": {
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/Item-Output"
"$ref": "#/components/schemas/Item-Input"
}
}
},
"required": True,
},
"402": {
"description": "Payment Required",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/Item-Output"
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/Item-Output"
}
}
}
},
},
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
"402": {
"description": "Payment Required",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/Item-Output"
}
}
}
},
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
},
},
},
},
},
},
"/items-list/": {
"post": {
"summary": "Create Item List",
"operationId": "create_item_list_items_list__post",
"requestBody": {
"content": {
"application/json": {
"schema": {
"items": {
"$ref": "#/components/schemas/Item-Input"
},
"type": "array",
"title": "Item",
}
}
},
"required": True,
},
"responses": {
"200": {
"description": "Successful Response",
"content": {"application/json": {"schema": {}}},
},
"422": {
"description": "Validation Error",
"/items-list/": {
"post": {
"summary": "Create Item List",
"operationId": "create_item_list_items_list__post",
"requestBody": {
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
"items": {
"$ref": "#/components/schemas/Item-Input"
},
"type": "array",
"title": "Item",
}
}
},
"required": True,
},
},
}
},
},
"components": {
"schemas": {
"HTTPValidationError": {
"properties": {
"detail": {
"items": {"$ref": "#/components/schemas/ValidationError"},
"type": "array",
"title": "Detail",
}
},
"type": "object",
"title": "HTTPValidationError",
},
"Item-Input": {
"properties": {
"name": {"type": "string", "title": "Name"},
"description": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "Description",
},
"sub": {
"anyOf": [
{"$ref": "#/components/schemas/SubItem-Input"},
{"type": "null"},
]
"responses": {
"200": {
"description": "Successful Response",
"content": {"application/json": {"schema": {}}},
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
},
},
},
},
"type": "object",
"required": ["name"],
"title": "Item",
}
},
"Item-Output": {
"properties": {
"name": {"type": "string", "title": "Name"},
"description": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "Description",
},
"sub": {
"anyOf": [
{"$ref": "#/components/schemas/SubItem-Output"},
{"type": "null"},
]
},
"components": {
"schemas": {
"HTTPValidationError": {
"properties": {
"detail": {
"items": {
"$ref": "#/components/schemas/ValidationError"
},
"type": "array",
"title": "Detail",
}
},
"type": "object",
"title": "HTTPValidationError",
},
"type": "object",
"required": ["name", "description", "sub"],
"title": "Item",
},
"SubItem-Input": {
"properties": {
"subname": {"type": "string", "title": "Subname"},
"sub_description": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "Sub Description",
"Item-Input": {
"properties": {
"name": {"type": "string", "title": "Name"},
"description": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "Description",
},
"sub": {
"anyOf": [
{"$ref": "#/components/schemas/SubItem-Input"},
{"type": "null"},
]
},
},
"tags": {
"items": {"type": "string"},
"type": "array",
"title": "Tags",
"default": [],
"type": "object",
"required": ["name"],
"title": "Item",
},
"Item-Output": {
"properties": {
"name": {"type": "string", "title": "Name"},
"description": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "Description",
},
"sub": {
"anyOf": [
{"$ref": "#/components/schemas/SubItem-Output"},
{"type": "null"},
]
},
},
"type": "object",
"required": ["name", "description", "sub"],
"title": "Item",
},
"type": "object",
"required": ["subname"],
"title": "SubItem",
},
"SubItem-Output": {
"properties": {
"subname": {"type": "string", "title": "Subname"},
"sub_description": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "Sub Description",
"SubItem-Input": {
"properties": {
"subname": {"type": "string", "title": "Subname"},
"sub_description": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "Sub Description",
},
"tags": {
"items": {"type": "string"},
"type": "array",
"title": "Tags",
"default": [],
},
},
"tags": {
"items": {"type": "string"},
"type": "array",
"title": "Tags",
"default": [],
"type": "object",
"required": ["subname"],
"title": "SubItem",
},
"SubItem-Output": {
"properties": {
"subname": {"type": "string", "title": "Subname"},
"sub_description": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "Sub Description",
},
"tags": {
"items": {"type": "string"},
"type": "array",
"title": "Tags",
"default": [],
},
},
"type": "object",
"required": ["subname", "sub_description", "tags"],
"title": "SubItem",
},
"type": "object",
"required": ["subname", "sub_description", "tags"],
"title": "SubItem",
},
"ValidationError": {
"properties": {
"loc": {
"items": {
"anyOf": [{"type": "string"}, {"type": "integer"}]
"ValidationError": {
"properties": {
"loc": {
"items": {
"anyOf": [{"type": "string"}, {"type": "integer"}]
},
"type": "array",
"title": "Location",
},
"type": "array",
"title": "Location",
"msg": {"type": "string", "title": "Message"},
"type": {"type": "string", "title": "Error Type"},
},
"msg": {"type": "string", "title": "Message"},
"type": {"type": "string", "title": "Error Type"},
"type": "object",
"required": ["loc", "msg", "type"],
"title": "ValidationError",
},
"type": "object",
"required": ["loc", "msg", "type"],
"title": "ValidationError",
},
}
},
}
}
},
}
)
@needs_pydanticv2

475
tests/test_pydantic_v1_v2_01.py

@ -0,0 +1,475 @@
import sys
from typing import Any, List, Union
from tests.utils import pydantic_snapshot, skip_module_if_py_gte_314
if sys.version_info >= (3, 14):
skip_module_if_py_gte_314()
from fastapi import FastAPI
from fastapi._compat.v1 import BaseModel
from fastapi.testclient import TestClient
from inline_snapshot import snapshot
class SubItem(BaseModel):
name: str
class Item(BaseModel):
title: str
size: int
description: Union[str, None] = None
sub: SubItem
multi: List[SubItem] = []
app = FastAPI()
@app.post("/simple-model")
def handle_simple_model(data: SubItem) -> SubItem:
return data
@app.post("/simple-model-filter", response_model=SubItem)
def handle_simple_model_filter(data: SubItem) -> Any:
extended_data = data.dict()
extended_data.update({"secret_price": 42})
return extended_data
@app.post("/item")
def handle_item(data: Item) -> Item:
return data
@app.post("/item-filter", response_model=Item)
def handle_item_filter(data: Item) -> Any:
extended_data = data.dict()
extended_data.update({"secret_data": "classified", "internal_id": 12345})
extended_data["sub"].update({"internal_id": 67890})
return extended_data
client = TestClient(app)
def test_old_simple_model():
response = client.post(
"/simple-model",
json={"name": "Foo"},
)
assert response.status_code == 200, response.text
assert response.json() == {"name": "Foo"}
def test_old_simple_model_validation_error():
response = client.post(
"/simple-model",
json={"wrong_name": "Foo"},
)
assert response.status_code == 422, response.text
assert response.json() == snapshot(
{
"detail": [
{
"loc": ["body", "name"],
"msg": "field required",
"type": "value_error.missing",
}
]
}
)
def test_old_simple_model_filter():
response = client.post(
"/simple-model-filter",
json={"name": "Foo"},
)
assert response.status_code == 200, response.text
assert response.json() == {"name": "Foo"}
def test_item_model():
response = client.post(
"/item",
json={
"title": "Test Item",
"size": 100,
"description": "This is a test item",
"sub": {"name": "SubItem1"},
"multi": [{"name": "Multi1"}, {"name": "Multi2"}],
},
)
assert response.status_code == 200, response.text
assert response.json() == {
"title": "Test Item",
"size": 100,
"description": "This is a test item",
"sub": {"name": "SubItem1"},
"multi": [{"name": "Multi1"}, {"name": "Multi2"}],
}
def test_item_model_minimal():
response = client.post(
"/item",
json={"title": "Minimal Item", "size": 50, "sub": {"name": "SubMin"}},
)
assert response.status_code == 200, response.text
assert response.json() == {
"title": "Minimal Item",
"size": 50,
"description": None,
"sub": {"name": "SubMin"},
"multi": [],
}
def test_item_model_validation_errors():
response = client.post(
"/item",
json={"title": "Missing fields"},
)
assert response.status_code == 422, response.text
error_detail = response.json()["detail"]
assert len(error_detail) == 2
assert {
"loc": ["body", "size"],
"msg": "field required",
"type": "value_error.missing",
} in error_detail
assert {
"loc": ["body", "sub"],
"msg": "field required",
"type": "value_error.missing",
} in error_detail
def test_item_model_nested_validation_error():
response = client.post(
"/item",
json={"title": "Test Item", "size": 100, "sub": {"wrong_field": "test"}},
)
assert response.status_code == 422, response.text
assert response.json() == snapshot(
{
"detail": [
{
"loc": ["body", "sub", "name"],
"msg": "field required",
"type": "value_error.missing",
}
]
}
)
def test_item_model_invalid_type():
response = client.post(
"/item",
json={"title": "Test Item", "size": "not_a_number", "sub": {"name": "SubItem"}},
)
assert response.status_code == 422, response.text
assert response.json() == snapshot(
{
"detail": [
{
"loc": ["body", "size"],
"msg": "value is not a valid integer",
"type": "type_error.integer",
}
]
}
)
def test_item_filter():
response = client.post(
"/item-filter",
json={
"title": "Filtered Item",
"size": 200,
"description": "Test filtering",
"sub": {"name": "SubFiltered"},
"multi": [],
},
)
assert response.status_code == 200, response.text
result = response.json()
assert result == {
"title": "Filtered Item",
"size": 200,
"description": "Test filtering",
"sub": {"name": "SubFiltered"},
"multi": [],
}
assert "secret_data" not in result
assert "internal_id" not in result
def test_openapi_schema():
response = client.get("/openapi.json")
assert response.status_code == 200, response.text
assert response.json() == snapshot(
{
"openapi": "3.1.0",
"info": {"title": "FastAPI", "version": "0.1.0"},
"paths": {
"/simple-model": {
"post": {
"summary": "Handle Simple Model",
"operationId": "handle_simple_model_simple_model_post",
"requestBody": {
"content": {
"application/json": {
"schema": pydantic_snapshot(
v2=snapshot(
{
"allOf": [
{
"$ref": "#/components/schemas/SubItem"
}
],
"title": "Data",
}
),
v1=snapshot(
{"$ref": "#/components/schemas/SubItem"}
),
)
}
},
"required": True,
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/SubItem"
}
}
},
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
},
},
},
}
},
"/simple-model-filter": {
"post": {
"summary": "Handle Simple Model Filter",
"operationId": "handle_simple_model_filter_simple_model_filter_post",
"requestBody": {
"content": {
"application/json": {
"schema": pydantic_snapshot(
v2=snapshot(
{
"allOf": [
{
"$ref": "#/components/schemas/SubItem"
}
],
"title": "Data",
}
),
v1=snapshot(
{"$ref": "#/components/schemas/SubItem"}
),
)
}
},
"required": True,
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/SubItem"
}
}
},
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
},
},
},
}
},
"/item": {
"post": {
"summary": "Handle Item",
"operationId": "handle_item_item_post",
"requestBody": {
"content": {
"application/json": {
"schema": pydantic_snapshot(
v2=snapshot(
{
"allOf": [
{
"$ref": "#/components/schemas/Item"
}
],
"title": "Data",
}
),
v1=snapshot(
{"$ref": "#/components/schemas/Item"}
),
)
}
},
"required": True,
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {"$ref": "#/components/schemas/Item"}
}
},
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
},
},
},
}
},
"/item-filter": {
"post": {
"summary": "Handle Item Filter",
"operationId": "handle_item_filter_item_filter_post",
"requestBody": {
"content": {
"application/json": {
"schema": pydantic_snapshot(
v2=snapshot(
{
"allOf": [
{
"$ref": "#/components/schemas/Item"
}
],
"title": "Data",
}
),
v1=snapshot(
{"$ref": "#/components/schemas/Item"}
),
)
}
},
"required": True,
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {"$ref": "#/components/schemas/Item"}
}
},
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
},
},
},
}
},
},
"components": {
"schemas": {
"HTTPValidationError": {
"properties": {
"detail": {
"items": {
"$ref": "#/components/schemas/ValidationError"
},
"type": "array",
"title": "Detail",
}
},
"type": "object",
"title": "HTTPValidationError",
},
"Item": {
"properties": {
"title": {"type": "string", "title": "Title"},
"size": {"type": "integer", "title": "Size"},
"description": {"type": "string", "title": "Description"},
"sub": {"$ref": "#/components/schemas/SubItem"},
"multi": {
"items": {"$ref": "#/components/schemas/SubItem"},
"type": "array",
"title": "Multi",
"default": [],
},
},
"type": "object",
"required": ["title", "size", "sub"],
"title": "Item",
},
"SubItem": {
"properties": {"name": {"type": "string", "title": "Name"}},
"type": "object",
"required": ["name"],
"title": "SubItem",
},
"ValidationError": {
"properties": {
"loc": {
"items": {
"anyOf": [{"type": "string"}, {"type": "integer"}]
},
"type": "array",
"title": "Location",
},
"msg": {"type": "string", "title": "Message"},
"type": {"type": "string", "title": "Error Type"},
},
"type": "object",
"required": ["loc", "msg", "type"],
"title": "ValidationError",
},
}
},
}
)

701
tests/test_pydantic_v1_v2_list.py

@ -0,0 +1,701 @@
import sys
from typing import Any, List, Union
from tests.utils import pydantic_snapshot, skip_module_if_py_gte_314
if sys.version_info >= (3, 14):
skip_module_if_py_gte_314()
from fastapi import FastAPI
from fastapi._compat.v1 import BaseModel
from fastapi.testclient import TestClient
from inline_snapshot import snapshot
class SubItem(BaseModel):
name: str
class Item(BaseModel):
title: str
size: int
description: Union[str, None] = None
sub: SubItem
multi: List[SubItem] = []
app = FastAPI()
@app.post("/item")
def handle_item(data: Item) -> List[Item]:
return [data, data]
@app.post("/item-filter", response_model=List[Item])
def handle_item_filter(data: Item) -> Any:
extended_data = data.dict()
extended_data.update({"secret_data": "classified", "internal_id": 12345})
extended_data["sub"].update({"internal_id": 67890})
return [extended_data, extended_data]
@app.post("/item-list")
def handle_item_list(data: List[Item]) -> Item:
if data:
return data[0]
return Item(title="", size=0, sub=SubItem(name=""))
@app.post("/item-list-filter", response_model=Item)
def handle_item_list_filter(data: List[Item]) -> Any:
if data:
extended_data = data[0].dict()
extended_data.update({"secret_data": "classified", "internal_id": 12345})
extended_data["sub"].update({"internal_id": 67890})
return extended_data
return Item(title="", size=0, sub=SubItem(name=""))
@app.post("/item-list-to-list")
def handle_item_list_to_list(data: List[Item]) -> List[Item]:
return data
@app.post("/item-list-to-list-filter", response_model=List[Item])
def handle_item_list_to_list_filter(data: List[Item]) -> Any:
if data:
extended_data = data[0].dict()
extended_data.update({"secret_data": "classified", "internal_id": 12345})
extended_data["sub"].update({"internal_id": 67890})
return [extended_data, extended_data]
return []
client = TestClient(app)
def test_item_to_list():
response = client.post(
"/item",
json={
"title": "Test Item",
"size": 100,
"description": "This is a test item",
"sub": {"name": "SubItem1"},
"multi": [{"name": "Multi1"}, {"name": "Multi2"}],
},
)
assert response.status_code == 200, response.text
result = response.json()
assert isinstance(result, list)
assert len(result) == 2
for item in result:
assert item == {
"title": "Test Item",
"size": 100,
"description": "This is a test item",
"sub": {"name": "SubItem1"},
"multi": [{"name": "Multi1"}, {"name": "Multi2"}],
}
def test_item_to_list_filter():
response = client.post(
"/item-filter",
json={
"title": "Filtered Item",
"size": 200,
"description": "Test filtering",
"sub": {"name": "SubFiltered"},
"multi": [],
},
)
assert response.status_code == 200, response.text
result = response.json()
assert isinstance(result, list)
assert len(result) == 2
for item in result:
assert item == {
"title": "Filtered Item",
"size": 200,
"description": "Test filtering",
"sub": {"name": "SubFiltered"},
"multi": [],
}
# Verify secret fields are filtered out
assert "secret_data" not in item
assert "internal_id" not in item
assert "internal_id" not in item["sub"]
def test_list_to_item():
response = client.post(
"/item-list",
json=[
{"title": "First Item", "size": 50, "sub": {"name": "First Sub"}},
{"title": "Second Item", "size": 75, "sub": {"name": "Second Sub"}},
],
)
assert response.status_code == 200, response.text
assert response.json() == {
"title": "First Item",
"size": 50,
"description": None,
"sub": {"name": "First Sub"},
"multi": [],
}
def test_list_to_item_empty():
response = client.post(
"/item-list",
json=[],
)
assert response.status_code == 200, response.text
assert response.json() == {
"title": "",
"size": 0,
"description": None,
"sub": {"name": ""},
"multi": [],
}
def test_list_to_item_filter():
response = client.post(
"/item-list-filter",
json=[
{
"title": "First Item",
"size": 100,
"sub": {"name": "First Sub"},
"multi": [{"name": "Multi1"}],
},
{"title": "Second Item", "size": 200, "sub": {"name": "Second Sub"}},
],
)
assert response.status_code == 200, response.text
result = response.json()
assert result == {
"title": "First Item",
"size": 100,
"description": None,
"sub": {"name": "First Sub"},
"multi": [{"name": "Multi1"}],
}
# Verify secret fields are filtered out
assert "secret_data" not in result
assert "internal_id" not in result
def test_list_to_item_filter_no_data():
response = client.post("/item-list-filter", json=[])
assert response.status_code == 200, response.text
assert response.json() == {
"title": "",
"size": 0,
"description": None,
"sub": {"name": ""},
"multi": [],
}
def test_list_to_list():
input_items = [
{"title": "Item 1", "size": 10, "sub": {"name": "Sub1"}},
{
"title": "Item 2",
"size": 20,
"description": "Second item",
"sub": {"name": "Sub2"},
"multi": [{"name": "M1"}, {"name": "M2"}],
},
{"title": "Item 3", "size": 30, "sub": {"name": "Sub3"}},
]
response = client.post(
"/item-list-to-list",
json=input_items,
)
assert response.status_code == 200, response.text
result = response.json()
assert isinstance(result, list)
assert len(result) == 3
assert result[0] == {
"title": "Item 1",
"size": 10,
"description": None,
"sub": {"name": "Sub1"},
"multi": [],
}
assert result[1] == {
"title": "Item 2",
"size": 20,
"description": "Second item",
"sub": {"name": "Sub2"},
"multi": [{"name": "M1"}, {"name": "M2"}],
}
assert result[2] == {
"title": "Item 3",
"size": 30,
"description": None,
"sub": {"name": "Sub3"},
"multi": [],
}
def test_list_to_list_filter():
response = client.post(
"/item-list-to-list-filter",
json=[{"title": "Item 1", "size": 100, "sub": {"name": "Sub1"}}],
)
assert response.status_code == 200, response.text
result = response.json()
assert isinstance(result, list)
assert len(result) == 2
for item in result:
assert item == {
"title": "Item 1",
"size": 100,
"description": None,
"sub": {"name": "Sub1"},
"multi": [],
}
# Verify secret fields are filtered out
assert "secret_data" not in item
assert "internal_id" not in item
def test_list_to_list_filter_no_data():
response = client.post(
"/item-list-to-list-filter",
json=[],
)
assert response.status_code == 200, response.text
assert response.json() == []
def test_list_validation_error():
response = client.post(
"/item-list",
json=[
{"title": "Valid Item", "size": 100, "sub": {"name": "Sub1"}},
{
"title": "Invalid Item"
# Missing required fields: size and sub
},
],
)
assert response.status_code == 422, response.text
error_detail = response.json()["detail"]
assert len(error_detail) == 2
assert {
"loc": ["body", 1, "size"],
"msg": "field required",
"type": "value_error.missing",
} in error_detail
assert {
"loc": ["body", 1, "sub"],
"msg": "field required",
"type": "value_error.missing",
} in error_detail
def test_list_nested_validation_error():
response = client.post(
"/item-list",
json=[
{"title": "Item with bad sub", "size": 100, "sub": {"wrong_field": "value"}}
],
)
assert response.status_code == 422, response.text
assert response.json() == snapshot(
{
"detail": [
{
"loc": ["body", 0, "sub", "name"],
"msg": "field required",
"type": "value_error.missing",
}
]
}
)
def test_list_type_validation_error():
response = client.post(
"/item-list",
json=[{"title": "Item", "size": "not_a_number", "sub": {"name": "Sub"}}],
)
assert response.status_code == 422, response.text
assert response.json() == snapshot(
{
"detail": [
{
"loc": ["body", 0, "size"],
"msg": "value is not a valid integer",
"type": "type_error.integer",
}
]
}
)
def test_invalid_list_structure():
response = client.post(
"/item-list",
json={"title": "Not a list", "size": 100, "sub": {"name": "Sub"}},
)
assert response.status_code == 422, response.text
assert response.json() == snapshot(
{
"detail": [
{
"loc": ["body"],
"msg": "value is not a valid list",
"type": "type_error.list",
}
]
}
)
def test_openapi_schema():
response = client.get("/openapi.json")
assert response.status_code == 200, response.text
assert response.json() == snapshot(
{
"openapi": "3.1.0",
"info": {"title": "FastAPI", "version": "0.1.0"},
"paths": {
"/item": {
"post": {
"summary": "Handle Item",
"operationId": "handle_item_item_post",
"requestBody": {
"content": {
"application/json": {
"schema": pydantic_snapshot(
v2=snapshot(
{
"allOf": [
{
"$ref": "#/components/schemas/Item"
}
],
"title": "Data",
}
),
v1=snapshot(
{"$ref": "#/components/schemas/Item"}
),
)
}
},
"required": True,
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"items": {
"$ref": "#/components/schemas/Item"
},
"type": "array",
"title": "Response Handle Item Item Post",
}
}
},
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
},
},
},
}
},
"/item-filter": {
"post": {
"summary": "Handle Item Filter",
"operationId": "handle_item_filter_item_filter_post",
"requestBody": {
"content": {
"application/json": {
"schema": pydantic_snapshot(
v2=snapshot(
{
"allOf": [
{
"$ref": "#/components/schemas/Item"
}
],
"title": "Data",
}
),
v1=snapshot(
{"$ref": "#/components/schemas/Item"}
),
)
}
},
"required": True,
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"items": {
"$ref": "#/components/schemas/Item"
},
"type": "array",
"title": "Response Handle Item Filter Item Filter Post",
}
}
},
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
},
},
},
}
},
"/item-list": {
"post": {
"summary": "Handle Item List",
"operationId": "handle_item_list_item_list_post",
"requestBody": {
"content": {
"application/json": {
"schema": {
"items": {"$ref": "#/components/schemas/Item"},
"type": "array",
"title": "Data",
}
}
},
"required": True,
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {"$ref": "#/components/schemas/Item"}
}
},
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
},
},
},
}
},
"/item-list-filter": {
"post": {
"summary": "Handle Item List Filter",
"operationId": "handle_item_list_filter_item_list_filter_post",
"requestBody": {
"content": {
"application/json": {
"schema": {
"items": {"$ref": "#/components/schemas/Item"},
"type": "array",
"title": "Data",
}
}
},
"required": True,
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {"$ref": "#/components/schemas/Item"}
}
},
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
},
},
},
}
},
"/item-list-to-list": {
"post": {
"summary": "Handle Item List To List",
"operationId": "handle_item_list_to_list_item_list_to_list_post",
"requestBody": {
"content": {
"application/json": {
"schema": {
"items": {"$ref": "#/components/schemas/Item"},
"type": "array",
"title": "Data",
}
}
},
"required": True,
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"items": {
"$ref": "#/components/schemas/Item"
},
"type": "array",
"title": "Response Handle Item List To List Item List To List Post",
}
}
},
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
},
},
},
}
},
"/item-list-to-list-filter": {
"post": {
"summary": "Handle Item List To List Filter",
"operationId": "handle_item_list_to_list_filter_item_list_to_list_filter_post",
"requestBody": {
"content": {
"application/json": {
"schema": {
"items": {"$ref": "#/components/schemas/Item"},
"type": "array",
"title": "Data",
}
}
},
"required": True,
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"items": {
"$ref": "#/components/schemas/Item"
},
"type": "array",
"title": "Response Handle Item List To List Filter Item List To List Filter Post",
}
}
},
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
},
},
},
}
},
},
"components": {
"schemas": {
"HTTPValidationError": {
"properties": {
"detail": {
"items": {
"$ref": "#/components/schemas/ValidationError"
},
"type": "array",
"title": "Detail",
}
},
"type": "object",
"title": "HTTPValidationError",
},
"Item": {
"properties": {
"title": {"type": "string", "title": "Title"},
"size": {"type": "integer", "title": "Size"},
"description": {"type": "string", "title": "Description"},
"sub": {"$ref": "#/components/schemas/SubItem"},
"multi": {
"items": {"$ref": "#/components/schemas/SubItem"},
"type": "array",
"title": "Multi",
"default": [],
},
},
"type": "object",
"required": ["title", "size", "sub"],
"title": "Item",
},
"SubItem": {
"properties": {"name": {"type": "string", "title": "Name"}},
"type": "object",
"required": ["name"],
"title": "SubItem",
},
"ValidationError": {
"properties": {
"loc": {
"items": {
"anyOf": [{"type": "string"}, {"type": "integer"}]
},
"type": "array",
"title": "Location",
},
"msg": {"type": "string", "title": "Message"},
"type": {"type": "string", "title": "Error Type"},
},
"type": "object",
"required": ["loc", "msg", "type"],
"title": "ValidationError",
},
}
},
}
)

1499
tests/test_pydantic_v1_v2_mixed.py

File diff suppressed because it is too large

0
tests/test_pydantic_v1_v2_multifile/__init__.py

142
tests/test_pydantic_v1_v2_multifile/main.py

@ -0,0 +1,142 @@
from typing import List
from fastapi import FastAPI
from . import modelsv1, modelsv2, modelsv2b
app = FastAPI()
@app.post("/v1-to-v2/item")
def handle_v1_item_to_v2(data: modelsv1.Item) -> modelsv2.Item:
return modelsv2.Item(
new_title=data.title,
new_size=data.size,
new_description=data.description,
new_sub=modelsv2.SubItem(new_sub_name=data.sub.name),
new_multi=[modelsv2.SubItem(new_sub_name=s.name) for s in data.multi],
)
@app.post("/v2-to-v1/item")
def handle_v2_item_to_v1(data: modelsv2.Item) -> modelsv1.Item:
return modelsv1.Item(
title=data.new_title,
size=data.new_size,
description=data.new_description,
sub=modelsv1.SubItem(name=data.new_sub.new_sub_name),
multi=[modelsv1.SubItem(name=s.new_sub_name) for s in data.new_multi],
)
@app.post("/v1-to-v2/item-to-list")
def handle_v1_item_to_v2_list(data: modelsv1.Item) -> List[modelsv2.Item]:
converted = modelsv2.Item(
new_title=data.title,
new_size=data.size,
new_description=data.description,
new_sub=modelsv2.SubItem(new_sub_name=data.sub.name),
new_multi=[modelsv2.SubItem(new_sub_name=s.name) for s in data.multi],
)
return [converted, converted]
@app.post("/v1-to-v2/list-to-list")
def handle_v1_list_to_v2_list(data: List[modelsv1.Item]) -> List[modelsv2.Item]:
result = []
for item in data:
result.append(
modelsv2.Item(
new_title=item.title,
new_size=item.size,
new_description=item.description,
new_sub=modelsv2.SubItem(new_sub_name=item.sub.name),
new_multi=[modelsv2.SubItem(new_sub_name=s.name) for s in item.multi],
)
)
return result
@app.post("/v1-to-v2/list-to-item")
def handle_v1_list_to_v2_item(data: List[modelsv1.Item]) -> modelsv2.Item:
if data:
item = data[0]
return modelsv2.Item(
new_title=item.title,
new_size=item.size,
new_description=item.description,
new_sub=modelsv2.SubItem(new_sub_name=item.sub.name),
new_multi=[modelsv2.SubItem(new_sub_name=s.name) for s in item.multi],
)
return modelsv2.Item(
new_title="", new_size=0, new_sub=modelsv2.SubItem(new_sub_name="")
)
@app.post("/v2-to-v1/item-to-list")
def handle_v2_item_to_v1_list(data: modelsv2.Item) -> List[modelsv1.Item]:
converted = modelsv1.Item(
title=data.new_title,
size=data.new_size,
description=data.new_description,
sub=modelsv1.SubItem(name=data.new_sub.new_sub_name),
multi=[modelsv1.SubItem(name=s.new_sub_name) for s in data.new_multi],
)
return [converted, converted]
@app.post("/v2-to-v1/list-to-list")
def handle_v2_list_to_v1_list(data: List[modelsv2.Item]) -> List[modelsv1.Item]:
result = []
for item in data:
result.append(
modelsv1.Item(
title=item.new_title,
size=item.new_size,
description=item.new_description,
sub=modelsv1.SubItem(name=item.new_sub.new_sub_name),
multi=[modelsv1.SubItem(name=s.new_sub_name) for s in item.new_multi],
)
)
return result
@app.post("/v2-to-v1/list-to-item")
def handle_v2_list_to_v1_item(data: List[modelsv2.Item]) -> modelsv1.Item:
if data:
item = data[0]
return modelsv1.Item(
title=item.new_title,
size=item.new_size,
description=item.new_description,
sub=modelsv1.SubItem(name=item.new_sub.new_sub_name),
multi=[modelsv1.SubItem(name=s.new_sub_name) for s in item.new_multi],
)
return modelsv1.Item(title="", size=0, sub=modelsv1.SubItem(name=""))
@app.post("/v2-to-v1/same-name")
def handle_v2_same_name_to_v1(
item1: modelsv2.Item, item2: modelsv2b.Item
) -> modelsv1.Item:
return modelsv1.Item(
title=item1.new_title,
size=item2.dup_size,
description=item1.new_description,
sub=modelsv1.SubItem(name=item1.new_sub.new_sub_name),
multi=[modelsv1.SubItem(name=s.dup_sub_name) for s in item2.dup_multi],
)
@app.post("/v2-to-v1/list-of-items-to-list-of-items")
def handle_v2_items_in_list_to_v1_item_in_list(
data1: List[modelsv2.ItemInList], data2: List[modelsv2b.ItemInList]
) -> List[modelsv1.ItemInList]:
result = []
item1 = data1[0]
item2 = data2[0]
result = [
modelsv1.ItemInList(name1=item1.name2),
modelsv1.ItemInList(name1=item2.dup_name2),
]
return result

19
tests/test_pydantic_v1_v2_multifile/modelsv1.py

@ -0,0 +1,19 @@
from typing import List, Union
from fastapi._compat.v1 import BaseModel
class SubItem(BaseModel):
name: str
class Item(BaseModel):
title: str
size: int
description: Union[str, None] = None
sub: SubItem
multi: List[SubItem] = []
class ItemInList(BaseModel):
name1: str

19
tests/test_pydantic_v1_v2_multifile/modelsv2.py

@ -0,0 +1,19 @@
from typing import List, Union
from pydantic import BaseModel
class SubItem(BaseModel):
new_sub_name: str
class Item(BaseModel):
new_title: str
new_size: int
new_description: Union[str, None] = None
new_sub: SubItem
new_multi: List[SubItem] = []
class ItemInList(BaseModel):
name2: str

19
tests/test_pydantic_v1_v2_multifile/modelsv2b.py

@ -0,0 +1,19 @@
from typing import List, Union
from pydantic import BaseModel
class SubItem(BaseModel):
dup_sub_name: str
class Item(BaseModel):
dup_title: str
dup_size: int
dup_description: Union[str, None] = None
dup_sub: SubItem
dup_multi: List[SubItem] = []
class ItemInList(BaseModel):
dup_name2: str

1237
tests/test_pydantic_v1_v2_multifile/test_multifile.py

File diff suppressed because it is too large

766
tests/test_pydantic_v1_v2_noneable.py

@ -0,0 +1,766 @@
import sys
from typing import Any, List, Union
from tests.utils import pydantic_snapshot, skip_module_if_py_gte_314
if sys.version_info >= (3, 14):
skip_module_if_py_gte_314()
from fastapi import FastAPI
from fastapi._compat.v1 import BaseModel
from fastapi.testclient import TestClient
from inline_snapshot import snapshot
from pydantic import BaseModel as NewBaseModel
class SubItem(BaseModel):
name: str
class Item(BaseModel):
title: str
size: int
description: Union[str, None] = None
sub: SubItem
multi: List[SubItem] = []
class NewSubItem(NewBaseModel):
new_sub_name: str
class NewItem(NewBaseModel):
new_title: str
new_size: int
new_description: Union[str, None] = None
new_sub: NewSubItem
new_multi: List[NewSubItem] = []
app = FastAPI()
@app.post("/v1-to-v2/")
def handle_v1_item_to_v2(data: Item) -> Union[NewItem, None]:
if data.size < 0:
return None
return NewItem(
new_title=data.title,
new_size=data.size,
new_description=data.description,
new_sub=NewSubItem(new_sub_name=data.sub.name),
new_multi=[NewSubItem(new_sub_name=s.name) for s in data.multi],
)
@app.post("/v1-to-v2/item-filter", response_model=Union[NewItem, None])
def handle_v1_item_to_v2_filter(data: Item) -> Any:
if data.size < 0:
return None
result = {
"new_title": data.title,
"new_size": data.size,
"new_description": data.description,
"new_sub": {"new_sub_name": data.sub.name, "new_sub_secret": "sub_hidden"},
"new_multi": [
{"new_sub_name": s.name, "new_sub_secret": "sub_hidden"} for s in data.multi
],
"secret": "hidden_v1_to_v2",
}
return result
@app.post("/v2-to-v1/item")
def handle_v2_item_to_v1(data: NewItem) -> Union[Item, None]:
if data.new_size < 0:
return None
return Item(
title=data.new_title,
size=data.new_size,
description=data.new_description,
sub=SubItem(name=data.new_sub.new_sub_name),
multi=[SubItem(name=s.new_sub_name) for s in data.new_multi],
)
@app.post("/v2-to-v1/item-filter", response_model=Union[Item, None])
def handle_v2_item_to_v1_filter(data: NewItem) -> Any:
if data.new_size < 0:
return None
result = {
"title": data.new_title,
"size": data.new_size,
"description": data.new_description,
"sub": {"name": data.new_sub.new_sub_name, "sub_secret": "sub_hidden"},
"multi": [
{"name": s.new_sub_name, "sub_secret": "sub_hidden"} for s in data.new_multi
],
"secret": "hidden_v2_to_v1",
}
return result
client = TestClient(app)
def test_v1_to_v2_item_success():
response = client.post(
"/v1-to-v2/",
json={
"title": "Old Item",
"size": 100,
"description": "V1 description",
"sub": {"name": "V1 Sub"},
"multi": [{"name": "M1"}, {"name": "M2"}],
},
)
assert response.status_code == 200, response.text
assert response.json() == {
"new_title": "Old Item",
"new_size": 100,
"new_description": "V1 description",
"new_sub": {"new_sub_name": "V1 Sub"},
"new_multi": [{"new_sub_name": "M1"}, {"new_sub_name": "M2"}],
}
def test_v1_to_v2_item_returns_none():
response = client.post(
"/v1-to-v2/",
json={"title": "Invalid Item", "size": -10, "sub": {"name": "Sub"}},
)
assert response.status_code == 200, response.text
assert response.json() is None
def test_v1_to_v2_item_minimal():
response = client.post(
"/v1-to-v2/", json={"title": "Minimal", "size": 50, "sub": {"name": "MinSub"}}
)
assert response.status_code == 200, response.text
assert response.json() == {
"new_title": "Minimal",
"new_size": 50,
"new_description": None,
"new_sub": {"new_sub_name": "MinSub"},
"new_multi": [],
}
def test_v1_to_v2_item_filter_success():
response = client.post(
"/v1-to-v2/item-filter",
json={
"title": "Filtered Item",
"size": 50,
"sub": {"name": "Sub"},
"multi": [{"name": "Multi1"}],
},
)
assert response.status_code == 200, response.text
result = response.json()
assert result["new_title"] == "Filtered Item"
assert result["new_size"] == 50
assert result["new_sub"]["new_sub_name"] == "Sub"
assert result["new_multi"][0]["new_sub_name"] == "Multi1"
# Verify secret fields are filtered out
assert "secret" not in result
assert "new_sub_secret" not in result["new_sub"]
assert "new_sub_secret" not in result["new_multi"][0]
def test_v1_to_v2_item_filter_returns_none():
response = client.post(
"/v1-to-v2/item-filter",
json={"title": "Invalid", "size": -1, "sub": {"name": "Sub"}},
)
assert response.status_code == 200, response.text
assert response.json() is None
def test_v2_to_v1_item_success():
response = client.post(
"/v2-to-v1/item",
json={
"new_title": "New Item",
"new_size": 200,
"new_description": "V2 description",
"new_sub": {"new_sub_name": "V2 Sub"},
"new_multi": [{"new_sub_name": "N1"}, {"new_sub_name": "N2"}],
},
)
assert response.status_code == 200, response.text
assert response.json() == {
"title": "New Item",
"size": 200,
"description": "V2 description",
"sub": {"name": "V2 Sub"},
"multi": [{"name": "N1"}, {"name": "N2"}],
}
def test_v2_to_v1_item_returns_none():
response = client.post(
"/v2-to-v1/item",
json={
"new_title": "Invalid New",
"new_size": -5,
"new_sub": {"new_sub_name": "NewSub"},
},
)
assert response.status_code == 200, response.text
assert response.json() is None
def test_v2_to_v1_item_minimal():
response = client.post(
"/v2-to-v1/item",
json={
"new_title": "MinimalNew",
"new_size": 75,
"new_sub": {"new_sub_name": "MinNewSub"},
},
)
assert response.status_code == 200, response.text
assert response.json() == {
"title": "MinimalNew",
"size": 75,
"description": None,
"sub": {"name": "MinNewSub"},
"multi": [],
}
def test_v2_to_v1_item_filter_success():
response = client.post(
"/v2-to-v1/item-filter",
json={
"new_title": "Filtered New",
"new_size": 75,
"new_sub": {"new_sub_name": "NewSub"},
"new_multi": [],
},
)
assert response.status_code == 200, response.text
result = response.json()
assert result["title"] == "Filtered New"
assert result["size"] == 75
assert result["sub"]["name"] == "NewSub"
# Verify secret fields are filtered out
assert "secret" not in result
assert "sub_secret" not in result["sub"]
def test_v2_to_v1_item_filter_returns_none():
response = client.post(
"/v2-to-v1/item-filter",
json={
"new_title": "Invalid Filtered",
"new_size": -100,
"new_sub": {"new_sub_name": "Sub"},
},
)
assert response.status_code == 200, response.text
assert response.json() is None
def test_v1_to_v2_validation_error():
response = client.post("/v1-to-v2/", json={"title": "Missing fields"})
assert response.status_code == 422, response.text
assert response.json() == snapshot(
{
"detail": [
{
"loc": ["body", "size"],
"msg": "field required",
"type": "value_error.missing",
},
{
"loc": ["body", "sub"],
"msg": "field required",
"type": "value_error.missing",
},
]
}
)
def test_v1_to_v2_nested_validation_error():
response = client.post(
"/v1-to-v2/",
json={"title": "Bad sub", "size": 100, "sub": {"wrong_field": "value"}},
)
assert response.status_code == 422, response.text
error_detail = response.json()["detail"]
assert len(error_detail) == 1
assert error_detail[0]["loc"] == ["body", "sub", "name"]
def test_v1_to_v2_type_validation_error():
response = client.post(
"/v1-to-v2/",
json={"title": "Bad type", "size": "not_a_number", "sub": {"name": "Sub"}},
)
assert response.status_code == 422, response.text
error_detail = response.json()["detail"]
assert len(error_detail) == 1
assert error_detail[0]["loc"] == ["body", "size"]
def test_v2_to_v1_validation_error():
response = client.post("/v2-to-v1/item", json={"new_title": "Missing fields"})
assert response.status_code == 422, response.text
assert response.json() == snapshot(
{
"detail": pydantic_snapshot(
v2=snapshot(
[
{
"type": "missing",
"loc": ["body", "new_size"],
"msg": "Field required",
"input": {"new_title": "Missing fields"},
},
{
"type": "missing",
"loc": ["body", "new_sub"],
"msg": "Field required",
"input": {"new_title": "Missing fields"},
},
]
),
v1=snapshot(
[
{
"loc": ["body", "new_size"],
"msg": "field required",
"type": "value_error.missing",
},
{
"loc": ["body", "new_sub"],
"msg": "field required",
"type": "value_error.missing",
},
]
),
)
}
)
def test_v2_to_v1_nested_validation_error():
response = client.post(
"/v2-to-v1/item",
json={
"new_title": "Bad sub",
"new_size": 200,
"new_sub": {"wrong_field": "value"},
},
)
assert response.status_code == 422, response.text
assert response.json() == snapshot(
{
"detail": [
pydantic_snapshot(
v2=snapshot(
{
"type": "missing",
"loc": ["body", "new_sub", "new_sub_name"],
"msg": "Field required",
"input": {"wrong_field": "value"},
}
),
v1=snapshot(
{
"loc": ["body", "new_sub", "new_sub_name"],
"msg": "field required",
"type": "value_error.missing",
}
),
)
]
}
)
def test_v2_to_v1_type_validation_error():
response = client.post(
"/v2-to-v1/item",
json={
"new_title": "Bad type",
"new_size": "not_a_number",
"new_sub": {"new_sub_name": "Sub"},
},
)
assert response.status_code == 422, response.text
assert response.json() == snapshot(
{
"detail": [
pydantic_snapshot(
v2=snapshot(
{
"type": "int_parsing",
"loc": ["body", "new_size"],
"msg": "Input should be a valid integer, unable to parse string as an integer",
"input": "not_a_number",
}
),
v1=snapshot(
{
"loc": ["body", "new_size"],
"msg": "value is not a valid integer",
"type": "type_error.integer",
}
),
)
]
}
)
def test_v1_to_v2_with_multi_items():
response = client.post(
"/v1-to-v2/",
json={
"title": "Complex Item",
"size": 300,
"description": "Item with multiple sub-items",
"sub": {"name": "Main Sub"},
"multi": [{"name": "Sub1"}, {"name": "Sub2"}, {"name": "Sub3"}],
},
)
assert response.status_code == 200, response.text
assert response.json() == snapshot(
{
"new_title": "Complex Item",
"new_size": 300,
"new_description": "Item with multiple sub-items",
"new_sub": {"new_sub_name": "Main Sub"},
"new_multi": [
{"new_sub_name": "Sub1"},
{"new_sub_name": "Sub2"},
{"new_sub_name": "Sub3"},
],
}
)
def test_v2_to_v1_with_multi_items():
response = client.post(
"/v2-to-v1/item",
json={
"new_title": "Complex New Item",
"new_size": 400,
"new_description": "New item with multiple sub-items",
"new_sub": {"new_sub_name": "Main New Sub"},
"new_multi": [{"new_sub_name": "NewSub1"}, {"new_sub_name": "NewSub2"}],
},
)
assert response.status_code == 200, response.text
assert response.json() == snapshot(
{
"title": "Complex New Item",
"size": 400,
"description": "New item with multiple sub-items",
"sub": {"name": "Main New Sub"},
"multi": [{"name": "NewSub1"}, {"name": "NewSub2"}],
}
)
def test_openapi_schema():
response = client.get("/openapi.json")
assert response.status_code == 200, response.text
assert response.json() == snapshot(
{
"openapi": "3.1.0",
"info": {"title": "FastAPI", "version": "0.1.0"},
"paths": {
"/v1-to-v2/": {
"post": {
"summary": "Handle V1 Item To V2",
"operationId": "handle_v1_item_to_v2_v1_to_v2__post",
"requestBody": {
"content": {
"application/json": {
"schema": pydantic_snapshot(
v2=snapshot(
{
"allOf": [
{
"$ref": "#/components/schemas/Item"
}
],
"title": "Data",
}
),
v1=snapshot(
{"$ref": "#/components/schemas/Item"}
),
)
}
},
"required": True,
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": pydantic_snapshot(
v2=snapshot(
{
"anyOf": [
{
"$ref": "#/components/schemas/NewItem"
},
{"type": "null"},
],
"title": "Response Handle V1 Item To V2 V1 To V2 Post",
}
),
v1=snapshot(
{"$ref": "#/components/schemas/NewItem"}
),
)
}
},
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
},
},
},
}
},
"/v1-to-v2/item-filter": {
"post": {
"summary": "Handle V1 Item To V2 Filter",
"operationId": "handle_v1_item_to_v2_filter_v1_to_v2_item_filter_post",
"requestBody": {
"content": {
"application/json": {
"schema": pydantic_snapshot(
v2=snapshot(
{
"allOf": [
{
"$ref": "#/components/schemas/Item"
}
],
"title": "Data",
}
),
v1=snapshot(
{"$ref": "#/components/schemas/Item"}
),
)
}
},
"required": True,
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": pydantic_snapshot(
v2=snapshot(
{
"anyOf": [
{
"$ref": "#/components/schemas/NewItem"
},
{"type": "null"},
],
"title": "Response Handle V1 Item To V2 Filter V1 To V2 Item Filter Post",
}
),
v1=snapshot(
{"$ref": "#/components/schemas/NewItem"}
),
)
}
},
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
},
},
},
}
},
"/v2-to-v1/item": {
"post": {
"summary": "Handle V2 Item To V1",
"operationId": "handle_v2_item_to_v1_v2_to_v1_item_post",
"requestBody": {
"content": {
"application/json": {
"schema": {"$ref": "#/components/schemas/NewItem"}
}
},
"required": True,
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {"$ref": "#/components/schemas/Item"}
}
},
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
},
},
},
}
},
"/v2-to-v1/item-filter": {
"post": {
"summary": "Handle V2 Item To V1 Filter",
"operationId": "handle_v2_item_to_v1_filter_v2_to_v1_item_filter_post",
"requestBody": {
"content": {
"application/json": {
"schema": {"$ref": "#/components/schemas/NewItem"}
}
},
"required": True,
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {"$ref": "#/components/schemas/Item"}
}
},
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
},
},
},
}
},
},
"components": {
"schemas": {
"HTTPValidationError": {
"properties": {
"detail": {
"items": {
"$ref": "#/components/schemas/ValidationError"
},
"type": "array",
"title": "Detail",
}
},
"type": "object",
"title": "HTTPValidationError",
},
"Item": {
"properties": {
"title": {"type": "string", "title": "Title"},
"size": {"type": "integer", "title": "Size"},
"description": {"type": "string", "title": "Description"},
"sub": {"$ref": "#/components/schemas/SubItem"},
"multi": {
"items": {"$ref": "#/components/schemas/SubItem"},
"type": "array",
"title": "Multi",
"default": [],
},
},
"type": "object",
"required": ["title", "size", "sub"],
"title": "Item",
},
"NewItem": {
"properties": {
"new_title": {"type": "string", "title": "New Title"},
"new_size": {"type": "integer", "title": "New Size"},
"new_description": pydantic_snapshot(
v2=snapshot(
{
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "New Description",
}
),
v1=snapshot(
{"type": "string", "title": "New Description"}
),
),
"new_sub": {"$ref": "#/components/schemas/NewSubItem"},
"new_multi": {
"items": {"$ref": "#/components/schemas/NewSubItem"},
"type": "array",
"title": "New Multi",
"default": [],
},
},
"type": "object",
"required": ["new_title", "new_size", "new_sub"],
"title": "NewItem",
},
"NewSubItem": {
"properties": {
"new_sub_name": {"type": "string", "title": "New Sub Name"}
},
"type": "object",
"required": ["new_sub_name"],
"title": "NewSubItem",
},
"SubItem": {
"properties": {"name": {"type": "string", "title": "Name"}},
"type": "object",
"required": ["name"],
"title": "SubItem",
},
"ValidationError": {
"properties": {
"loc": {
"items": {
"anyOf": [{"type": "string"}, {"type": "integer"}]
},
"type": "array",
"title": "Location",
},
"msg": {"type": "string", "title": "Message"},
"type": {"type": "string", "title": "Error Type"},
},
"type": "object",
"required": ["loc", "msg", "type"],
"title": "ValidationError",
},
}
},
}
)

18
tests/test_response_model_as_return_annotation.py

@ -2,6 +2,7 @@ from typing import List, Union
import pytest
from fastapi import FastAPI
from fastapi._compat import v1
from fastapi.exceptions import FastAPIError, ResponseValidationError
from fastapi.responses import JSONResponse, Response
from fastapi.testclient import TestClient
@ -509,6 +510,23 @@ def test_invalid_response_model_field():
assert "parameter response_model=None" in e.value.args[0]
# TODO: remove when dropping Pydantic v1 support
def test_invalid_response_model_field_pv1():
app = FastAPI()
class Model(v1.BaseModel):
foo: str
with pytest.raises(FastAPIError) as e:
@app.get("/")
def read_root() -> Union[Response, Model, None]:
return Response(content="Foo") # pragma: no cover
assert "valid Pydantic field type" in e.value.args[0]
assert "parameter response_model=None" in e.value.args[0]
def test_openapi_schema():
response = client.get("/openapi.json")
assert response.status_code == 200, response.text

0
tests/test_tutorial/test_pydantic_v1_in_v2/__init__.py

37
tests/test_tutorial/test_pydantic_v1_in_v2/test_tutorial001.py

@ -0,0 +1,37 @@
import sys
from typing import Any
import pytest
from fastapi._compat import PYDANTIC_V2
from tests.utils import skip_module_if_py_gte_314
if sys.version_info >= (3, 14):
skip_module_if_py_gte_314()
if not PYDANTIC_V2:
pytest.skip("This test is only for Pydantic v2", allow_module_level=True)
import importlib
import pytest
from ...utils import needs_py310
@pytest.fixture(
name="mod",
params=[
"tutorial001_an",
pytest.param("tutorial001_an_py310", marks=needs_py310),
],
)
def get_mod(request: pytest.FixtureRequest):
mod = importlib.import_module(f"docs_src.pydantic_v1_in_v2.{request.param}")
return mod
def test_model(mod: Any):
item = mod.Item(name="Foo", size=3.4)
assert item.dict() == {"name": "Foo", "description": None, "size": 3.4}

140
tests/test_tutorial/test_pydantic_v1_in_v2/test_tutorial002.py

@ -0,0 +1,140 @@
import sys
import pytest
from fastapi._compat import PYDANTIC_V2
from inline_snapshot import snapshot
from tests.utils import skip_module_if_py_gte_314
if sys.version_info >= (3, 14):
skip_module_if_py_gte_314()
if not PYDANTIC_V2:
pytest.skip("This test is only for Pydantic v2", allow_module_level=True)
import importlib
import pytest
from fastapi.testclient import TestClient
from ...utils import needs_py310
@pytest.fixture(
name="client",
params=[
"tutorial002_an",
pytest.param("tutorial002_an_py310", marks=needs_py310),
],
)
def get_client(request: pytest.FixtureRequest):
mod = importlib.import_module(f"docs_src.pydantic_v1_in_v2.{request.param}")
c = TestClient(mod.app)
return c
def test_call(client: TestClient):
response = client.post("/items/", json={"name": "Foo", "size": 3.4})
assert response.status_code == 200, response.text
assert response.json() == {
"name": "Foo",
"description": None,
"size": 3.4,
}
def test_openapi_schema(client: TestClient):
response = client.get("/openapi.json")
assert response.status_code == 200, response.text
assert response.json() == snapshot(
{
"openapi": "3.1.0",
"info": {"title": "FastAPI", "version": "0.1.0"},
"paths": {
"/items/": {
"post": {
"summary": "Create Item",
"operationId": "create_item_items__post",
"requestBody": {
"content": {
"application/json": {
"schema": {
"allOf": [
{"$ref": "#/components/schemas/Item"}
],
"title": "Item",
}
}
},
"required": True,
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {"$ref": "#/components/schemas/Item"}
}
},
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
},
},
},
}
}
},
"components": {
"schemas": {
"HTTPValidationError": {
"properties": {
"detail": {
"items": {
"$ref": "#/components/schemas/ValidationError"
},
"type": "array",
"title": "Detail",
}
},
"type": "object",
"title": "HTTPValidationError",
},
"Item": {
"properties": {
"name": {"type": "string", "title": "Name"},
"description": {"type": "string", "title": "Description"},
"size": {"type": "number", "title": "Size"},
},
"type": "object",
"required": ["name", "size"],
"title": "Item",
},
"ValidationError": {
"properties": {
"loc": {
"items": {
"anyOf": [{"type": "string"}, {"type": "integer"}]
},
"type": "array",
"title": "Location",
},
"msg": {"type": "string", "title": "Message"},
"type": {"type": "string", "title": "Error Type"},
},
"type": "object",
"required": ["loc", "msg", "type"],
"title": "ValidationError",
},
}
},
}
)

154
tests/test_tutorial/test_pydantic_v1_in_v2/test_tutorial003.py

@ -0,0 +1,154 @@
import sys
import pytest
from fastapi._compat import PYDANTIC_V2
from inline_snapshot import snapshot
from tests.utils import skip_module_if_py_gte_314
if sys.version_info >= (3, 14):
skip_module_if_py_gte_314()
if not PYDANTIC_V2:
pytest.skip("This test is only for Pydantic v2", allow_module_level=True)
import importlib
from fastapi.testclient import TestClient
from ...utils import needs_py310
@pytest.fixture(
name="client",
params=[
"tutorial003_an",
pytest.param("tutorial003_an_py310", marks=needs_py310),
],
)
def get_client(request: pytest.FixtureRequest):
mod = importlib.import_module(f"docs_src.pydantic_v1_in_v2.{request.param}")
c = TestClient(mod.app)
return c
def test_call(client: TestClient):
response = client.post("/items/", json={"name": "Foo", "size": 3.4})
assert response.status_code == 200, response.text
assert response.json() == {
"name": "Foo",
"description": None,
"size": 3.4,
}
def test_openapi_schema(client: TestClient):
response = client.get("/openapi.json")
assert response.status_code == 200, response.text
assert response.json() == snapshot(
{
"openapi": "3.1.0",
"info": {"title": "FastAPI", "version": "0.1.0"},
"paths": {
"/items/": {
"post": {
"summary": "Create Item",
"operationId": "create_item_items__post",
"requestBody": {
"content": {
"application/json": {
"schema": {
"allOf": [
{"$ref": "#/components/schemas/Item"}
],
"title": "Item",
}
}
},
"required": True,
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/ItemV2"
}
}
},
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
},
},
},
}
}
},
"components": {
"schemas": {
"HTTPValidationError": {
"properties": {
"detail": {
"items": {
"$ref": "#/components/schemas/ValidationError"
},
"type": "array",
"title": "Detail",
}
},
"type": "object",
"title": "HTTPValidationError",
},
"Item": {
"properties": {
"name": {"type": "string", "title": "Name"},
"description": {"type": "string", "title": "Description"},
"size": {"type": "number", "title": "Size"},
},
"type": "object",
"required": ["name", "size"],
"title": "Item",
},
"ItemV2": {
"properties": {
"name": {"type": "string", "title": "Name"},
"description": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "Description",
},
"size": {"type": "number", "title": "Size"},
},
"type": "object",
"required": ["name", "size"],
"title": "ItemV2",
},
"ValidationError": {
"properties": {
"loc": {
"items": {
"anyOf": [{"type": "string"}, {"type": "integer"}]
},
"type": "array",
"title": "Location",
},
"msg": {"type": "string", "title": "Message"},
"type": {"type": "string", "title": "Error Type"},
},
"type": "object",
"required": ["loc", "msg", "type"],
"title": "ValidationError",
},
}
},
}
)

153
tests/test_tutorial/test_pydantic_v1_in_v2/test_tutorial004.py

@ -0,0 +1,153 @@
import sys
import pytest
from fastapi._compat import PYDANTIC_V2
from inline_snapshot import snapshot
from tests.utils import skip_module_if_py_gte_314
if sys.version_info >= (3, 14):
skip_module_if_py_gte_314()
if not PYDANTIC_V2:
pytest.skip("This test is only for Pydantic v2", allow_module_level=True)
import importlib
from fastapi.testclient import TestClient
from ...utils import needs_py39, needs_py310
@pytest.fixture(
name="client",
params=[
"tutorial004_an",
pytest.param("tutorial004_an_py39", marks=needs_py39),
pytest.param("tutorial004_an_py310", marks=needs_py310),
],
)
def get_client(request: pytest.FixtureRequest):
mod = importlib.import_module(f"docs_src.pydantic_v1_in_v2.{request.param}")
c = TestClient(mod.app)
return c
def test_call(client: TestClient):
response = client.post("/items/", json={"item": {"name": "Foo", "size": 3.4}})
assert response.status_code == 200, response.text
assert response.json() == {
"name": "Foo",
"description": None,
"size": 3.4,
}
def test_openapi_schema(client: TestClient):
response = client.get("/openapi.json")
assert response.status_code == 200, response.text
assert response.json() == snapshot(
{
"openapi": "3.1.0",
"info": {"title": "FastAPI", "version": "0.1.0"},
"paths": {
"/items/": {
"post": {
"summary": "Create Item",
"operationId": "create_item_items__post",
"requestBody": {
"content": {
"application/json": {
"schema": {
"allOf": [
{
"$ref": "#/components/schemas/Body_create_item_items__post"
}
],
"title": "Body",
}
}
},
"required": True,
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {"$ref": "#/components/schemas/Item"}
}
},
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
},
},
},
}
}
},
"components": {
"schemas": {
"Body_create_item_items__post": {
"properties": {
"item": {
"allOf": [{"$ref": "#/components/schemas/Item"}],
"title": "Item",
}
},
"type": "object",
"required": ["item"],
"title": "Body_create_item_items__post",
},
"HTTPValidationError": {
"properties": {
"detail": {
"items": {
"$ref": "#/components/schemas/ValidationError"
},
"type": "array",
"title": "Detail",
}
},
"type": "object",
"title": "HTTPValidationError",
},
"Item": {
"properties": {
"name": {"type": "string", "title": "Name"},
"description": {"type": "string", "title": "Description"},
"size": {"type": "number", "title": "Size"},
},
"type": "object",
"required": ["name", "size"],
"title": "Item",
},
"ValidationError": {
"properties": {
"loc": {
"items": {
"anyOf": [{"type": "string"}, {"type": "integer"}]
},
"type": "array",
"title": "Location",
},
"msg": {"type": "string", "title": "Message"},
"type": {"type": "string", "title": "Error Type"},
},
"type": "object",
"required": ["loc", "msg", "type"],
"title": "ValidationError",
},
}
},
}
)

9
tests/utils.py

@ -8,10 +8,19 @@ needs_py39 = pytest.mark.skipif(sys.version_info < (3, 9), reason="requires pyth
needs_py310 = pytest.mark.skipif(
sys.version_info < (3, 10), reason="requires python3.10+"
)
needs_py_lt_314 = pytest.mark.skipif(
sys.version_info > (3, 13), reason="requires python3.13-"
)
needs_pydanticv2 = pytest.mark.skipif(not PYDANTIC_V2, reason="requires Pydantic v2")
needs_pydanticv1 = pytest.mark.skipif(PYDANTIC_V2, reason="requires Pydantic v1")
def skip_module_if_py_gte_314():
"""Skip entire module on Python 3.14+ at import time."""
if sys.version_info >= (3, 14):
pytest.skip("requires python3.13-", allow_module_level=True)
def pydantic_snapshot(
*,
v2: Snapshot,

Loading…
Cancel
Save