4 changed files with 102 additions and 0 deletions
@ -0,0 +1,55 @@ |
|||
The same way you can declare additional validation and metadata in endpoint function parameters with `Query`, `Path` and `Body`, you can declare validation and metadata inside of Pydantic models using `Schema`. |
|||
|
|||
## Import Schema |
|||
|
|||
First, you have to import it: |
|||
|
|||
```Python hl_lines="2" |
|||
{!./tutorial/src/body-schema/tutorial001.py!} |
|||
``` |
|||
|
|||
!!! warning |
|||
Notice that `Schema` is imported directly from `pydantic`, not form `fastapi` as are all the rest (`Query`, `Path`, `Body`, etc). |
|||
|
|||
|
|||
## Declare model attributes |
|||
|
|||
You can then use `Schema` with model attributes: |
|||
|
|||
```Python hl_lines="9 10" |
|||
{!./tutorial/src/body-schema/tutorial001.py!} |
|||
``` |
|||
|
|||
`Schema` works the same way as `Query`, `Path` and `Body`, it has all the same parameters, etc. |
|||
|
|||
|
|||
!!! info |
|||
Actually, `Query`, `Path` and others you'll see next are subclasses of a common `Param` which is itself a subclass of Pydantic's `Schema`. |
|||
|
|||
`Body` is also a subclass of `Schema` directly. And there are others you will see later that are subclasses of `Body`. |
|||
|
|||
!!! tip |
|||
Notice how each model's attribute with a type, default value and `Schema` has the same structure as an endpoint's function's parameter, with `Schema` instead of `Path`, `Query` and `Body`. |
|||
|
|||
## Schema extras |
|||
|
|||
In `Schema`, `Path`, `Query`, `Body` and others you'll see later, you can declare extra parameters apart from those described before. |
|||
|
|||
Those parameters will be added as-is to the output JSON Schema. |
|||
|
|||
If you know JSON Schema and want to add extra information appart from what we have discussed here, you can pass that as extra keyword arguments. |
|||
|
|||
!!! warning |
|||
Have in mind that extra parameters passed won't add any validation, only annotation, for documentation purposes. |
|||
|
|||
For example, you can use that functionality to pass a <a href="http://json-schema.org/latest/json-schema-validation.html#rfc.section.8.5" target="_blank">JSON Schema example</a> field to a body request JSON Schema: |
|||
|
|||
```Python hl_lines="20 21 22 23 24 25" |
|||
{!./tutorial/src/body-schema/tutorial002.py!} |
|||
``` |
|||
|
|||
## Recap |
|||
|
|||
You can use Pydantic's `Schema` to declare extra validations and metadata for model attributes. |
|||
|
|||
You can also use the extra keyword arguments to pass additional JSON Schema metadata. |
@ -0,0 +1,17 @@ |
|||
from fastapi import Body, FastAPI |
|||
from pydantic import BaseModel, Schema |
|||
|
|||
app = FastAPI() |
|||
|
|||
|
|||
class Item(BaseModel): |
|||
name: str |
|||
description: str = Schema(None, title="The description of the item", max_length=300) |
|||
price: float = Schema(..., gt=0, description="The price must be greater than zero") |
|||
tax: float = None |
|||
|
|||
|
|||
@app.put("/items/{item_id}") |
|||
async def update_item(*, item_id: int, item: Item = Body(..., embed=True)): |
|||
results = {"item_id": item_id, "item": item} |
|||
return results |
@ -0,0 +1,29 @@ |
|||
from fastapi import Body, FastAPI |
|||
from pydantic import BaseModel |
|||
|
|||
app = FastAPI() |
|||
|
|||
|
|||
class Item(BaseModel): |
|||
name: str |
|||
description: str = None |
|||
price: float |
|||
tax: float = None |
|||
|
|||
|
|||
@app.put("/items/{item_id}") |
|||
async def update_item( |
|||
*, |
|||
item_id: int, |
|||
item: Item = Body( |
|||
..., |
|||
example={ |
|||
"name": "Foo", |
|||
"description": "A very nice Item", |
|||
"price": 35.4, |
|||
"tax": 3.2, |
|||
}, |
|||
) |
|||
): |
|||
results = {"item_id": item_id, "item": item} |
|||
return results |
Loading…
Reference in new issue